Math, asked by stephenfunmilayo22, 3 months ago

The first term of a G.P is twice the common ratio .Find the sum of the first two terms of the progression if its infinity is 8​

Answers

Answered by PopularAnswerer01
25

Question:-

  • The first term of a G.P is twice the common ratio . Find the sum of the first two terms of the progression if its sum of infinity is 8.

To Find:-

  • Find the sum of two numbers.

Solution:-

Here ,

  • a = 2r

  • \sf Sum \: of \: all \: terms = \dfrac { a } { 1 + r }

Then ,

\longrightarrow\sf \: \dfrac { 2r } { 1 - r } = 8

\longrightarrow\sf \: 2r = 8 - 8r

\longrightarrow\sf \: 8r + 2r = 8

\longrightarrow\sf \: 10r = 8

\longrightarrow\sf \: r = \cancel\dfrac { 8 } { 10 }

\longrightarrow\sf \: r = \dfrac { 4 } { 5 }

Then ,

\longrightarrow\sf \: a = 2r

\longrightarrow\sf \: a = 2 \times \dfrac { 4 } { 5 }

\longrightarrow\sf \: a = \dfrac { 8 } { 5 }

Now ,

We have to find the sum of first two terms:-

\longrightarrow\sf \: a ( 1 + r )

\longrightarrow\sf \: \dfrac { 8 } { 5 } ( 1 + \dfrac { 4 } { 5 } )

\longrightarrow\sf \: \dfrac { 8 } { 5 } \times \dfrac { 9 } { 5 }

\longrightarrow\sf \: \dfrac { 72 } { 25 }

Hence ,

  • Sum of all terms is \sf \: \dfrac { 72 } { 25 }
Answered by Anonymous
4

Question:-

The first term of a G.P is twice the common ratio . Find the sum of the first two terms of the progression if its sum of infinity is 8.

To Find:-

Find the sum of two numbers.

Solution:-

Here ,

a = 2r

\sf Sum \: of \: all \: terms = \dfrac { a } { 1 + r }

Then ,

\longrightarrow\sf \: \dfrac { 2r } { 1 - r } = 8

\longrightarrow\sf \: 2r = 8 - 8r

\longrightarrow\sf \: 8r + 2r = 8

\longrightarrow\sf \: 10r = 8

\longrightarrow\sf \: r = \cancel\dfrac { 8 } { 10 }

\longrightarrow\sf \: r = \dfrac { 4 } { 5 }

Then ,

\longrightarrow\sf \: a = 2r

\longrightarrow\sf \: a = 2 \times \dfrac { 4 } { 5 }

\longrightarrow\sf \: a = \dfrac { 8 } { 5 }

Now ,

We have to find the sum of first two terms:-

\longrightarrow\sf \: a ( 1 + r )

\longrightarrow\sf \: \dfrac { 8 } { 5 } ( 1 + \dfrac { 4 } { 5 } )

\longrightarrow\sf \: \dfrac { 8 } { 5 } \times \dfrac { 9 } { 5 }

\longrightarrow\sf \: \dfrac { 72 } { 25 }

Hence ,

Sum of all terms is \sf \: \dfrac { 72 } { 25 }

Similar questions