Math, asked by pusapati22, 9 months ago

The first term of an A.P. is 5 and the last term is 45. If the sum of all the
terms is 400, the number of terms is​

Answers

Answered by aryan36556
20

Answer:

The number of terms in the given A.P. is 16.

Step-by-step explanation:

First term=a=t1=5

Last term=tn=45.

Sum of terms=Sn=400.

We know,

sn =  \frac{n}{2} (t1 + tn)

400=n/2 (5+45)

400×2=n×50

800=50n

800/50=n

80/5=n

n=16.

Hope it helps you.

Please mark as Brainliest.

Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Number\:of\:terms=16}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven :}} \\  \tt: \implies First \: term( a_{1} ) = 5 \\  \\  \tt:  \implies Last \: term( l)  = 45 \\  \\  \tt:  \implies Sum \: of \: nth \: term ( s_{n}) = 400 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Number \: of \: terms(n) = ?

• According to given question :

 \bold{As \: we \: know\: that} \\  \tt:  \implies  s_{n} =  \frac{n}{2} (2a + (n - 1)d) \\  \\ \tt:  \implies  s_{n} = \frac{n}{2} (a + a + (n - 1)d) \\  \\  \tt \circ \: l = a + (n - 1) d \\ \\ \tt:  \implies  s_{n} = \frac{n}{2}(a + l) \\  \\  \tt:  \implies  400 =  \frac{n}{2} (5 + 45) \\  \\ \tt:  \implies  400 \times 2 = n \times 50 \\  \\ \tt:  \implies   \frac{400 \times 2}{50}  = n \\  \\  \green{\tt:  \implies n=16} \\  \\   \green{\tt \therefore Number \: of \: terms \: in \: ap \: s \: 16}

Similar questions