Math, asked by saurabhboro6, 11 months ago

The first term of an ap are 17 and 350 respectively.If the common difference is 9,how many terms are there and what is their sum?

Answers

Answered by harshit393
0

Answer:

n=38,Sn=6973

Step-by-step explanation:

a=17

an=350

d=9

an=a+(n-1)d

350=17+(n-1)9

350-17=9n-9

333+9=9n

342=9n

342÷9=n

38=n

Sn=n÷2(a+an)

Sn=38÷2(17+350)

Sn=19(367)

Sn=6973

Answered by Anonymous
2

Given :

  • First term, a = 17
  • Last term, l = 350
  • Common difference, d = 9

To Find :

  • Number of terms in AP, n = ?
  • Sum of total number of terms in AP,  \sf S_{n} = ?

Solution :

Let, l be the nth term of AP.

\sf : \implies a_{n} = l = 350

Now, we know that :

\Large \underline{\boxed{\bf{ a_{n} = a + ( n - 1 ) d }}}

By, putting values,

\sf : \implies 350 = 17 + ( n - 1 ) \times 9

\sf : \implies 350 = 17 + 9n - 9

\sf : \implies 350 = 8 + 9n

\sf : \implies 350 - 8 = 9n

\sf : \implies 342 = 9n

\sf : \implies \dfrac{ \cancel{342}^{38}}{\cancel{9}} = n

\sf : \implies 38 = n

\sf : \implies n = 38

\large \underline{\boxed{\sf n = 38}}

Hence, There are 38 number of terms in given AP.

Now, let's find sum of total number of terms in AP.

We know that :

\Large \underline{\boxed{\bf{ S_{n} = \dfrac{n}{2} ( a + a_{n} ) }}}

We have :

  • n = 38
  • a = 17
  •  \sf a_{n} = 350

\sf : \implies S_{38} = \dfrac{\cancel{38}^{19}}{\cancel{2}} ( 17 + 350 )

\sf : \implies S_{38} = 19 (367)

\sf : \implies S_{38} = 19 \times 367

\sf : \implies S_{38} = 6973

\large \underline{\boxed{\sf S_{38} = 6973}}

Hence, There are 38 number of terms in given AP and their sum is 6973.

Similar questions