Math, asked by ashwanthsnair, 11 months ago

the first term of an AP is 45 and the sum is 400. Find the number of terms and common difference

Answers

Answered by Anonymous
5

S O L U T I O N : (Ques.Error)

\bf{\large{\underline{\bf{Given\::}}}}}

  • The first term of an A.P. = 5
  • The last term of an A.P. = 45
  • The sum = 400

\bf{\large{\underline{\bf{To\:find\::}}}}}

The number of terms and common difference.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We know that formula of the last term of the sum of an A.P;

\boxed{\bf{S_n=\frac{n}{2} \bigg(a+l\bigg)}}}}

A/q

\longrightarrow\tt{400=\dfrac{n}{2} \bigg(5+45\bigg)}\\\\\longrightarrow\tt{800=n(50)}\\\\\longrightarrow\tt{800=50n}\\\\\longrightarrow\tt{n=\cancel{800/50}}\\\\\longrightarrow\bf{n=16}

We know that formula of the A.P;

\boxed{\bf{a_n=a+(n-1)d}}}}

\longrightarrow\tt{5+(16-1)d=45}\\\\\longrightarrow\tt{5+15d=45}\\\\\longrightarrow\tt{15d=45-5}\\\\\longrightarrow\tt{15d=40}\\\\\longrightarrow\tt{d=\cancel{40/15}}\\\\\longrightarrow\bf{d=8/3}

Thus;

The number of terms & common difference will be 16 & 8/3 .

Similar questions