Math, asked by yashikaagrawalixe, 1 month ago

The first term of an arithmetic progression of consecutive integers is k² + 1. The sum of 2k + 1 terms of this progression may be expressed as
(1) k³ + (k + 1)³
(2) (k-1)³+ k³
(3) (K + 1)³
(4) (k + 1)²​

Answers

Answered by SparklingBoy
90

-------------------------------

▪ Given :-

For an arithmetic progression of consecutive integers :

  • First Term = k² + 1.

-------------------------------

▪ To Find :-

  • Sum of 2k + 1 Terms

-------------------------------

▪ Formula for Sum :-

If an A.P contains n terms then such is n terms is given by :

 \large \mathtt{S_n = \dfrac{n}{2}  \bigg \{2a + (n - 1)d \bigg \} }

Where ,

  • a = First Term

  • d = Common Difference

-------------------------------

▪ Solution :-

Here ,

a = k² + 1

d = 1 ( A.P. is consecutive Integers)

n = 2k + 1

Hence By Formula For Sum ;

 \mathtt{Sum =  \dfrac{2k + 1}{2} } \bigg \{ \mathtt{2( {k}^{2}  + 1) +( 2k + 1 - 1)1 }\bigg \} \\  \\ \large \mathtt{ =  \frac{2k + 1}{2}   \bigg(2k {}^{2} + 2 + 2k \bigg) } \\  \\  \large\mathtt{ = (2k + 1)( {k}^{2}  + k + 1)} \\  \\ \large  \mathtt{ =2k^3+2k^2+2k+k^2+k+1 }\\  \\ \large \mathtt{=2k^3+3k^2+3k+1} \\  \\ \large \mathtt{ =  {k}^{3} + ( {k}^{3}  + 1 + 3 {k}^{2}   + 3k)} \\  \\   \pink{ \Large \bf  =  {k}^{3}  + ( {k + 1)}^{3} }

\large \purple {\pmb{\mathcal{Hence \:  \:  Option \:  \:  A \: \:   is \:  \:  Correct} }}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------


Ataraxia: Great ^^
Answered by Itzheartcracer
51

Given :-

The first term of an arithmetic progression of consecutive integers is k² + 1.

To Find :-

The sum of 2k + 1 terms of this progression may be expressed as

Solution :-

We know that

Sₙ = n/2[2a + (n - 1)d]

Sₙ = 2k + 1/2[2(k² + 1) + (2k + 1 - 1)1]

Sₙ = 2k + 1/2 [2k² + 2 + 2k + 1 - 1]

Sₙ = 2k + 1/2[2k² + 2 + 2k]

Sₙ = 2k + 1 × 2k² + 2 + 2k/2

Sₙ = 2k + 1 × k² + 1 + k

Sₙ = 2k³ + 2k² + 2k + k² + k + 1

Sₙ = 2k³ + 3k³ + 3k + 1

Sₙ = k³ + (k + 1)³

Similar questions