Math, asked by yogitayeole08, 3 months ago

The first term of G.P whose second term is 2 & sum of infinity will be ​

Answers

Answered by Anonymous
26

Step-by-step explanation:

 \blue{ \bf{ \underline{QUESTION} : -  }}

The first term of G.P whose second term is 2 & sum of infinity will be .

_________________________

 \boxed{ \bold{ \huge{ Given}}}

  • Second Term of G.P = 2

  •  \bold{a_2 = 2}

  •  \bold{r =  \frac{2}{a}}

 \boxed{ \huge{ \bold{ to \: find}}}

  • Sum of infinity

 \star{ \pink{ \underline{ \underline{Solution :  - }}}}

{ \ \boxed{ \bold{ \purple{  \frac{a}{1 - r}  =s _ \infty }}}}

 \implies{ \bold{ \frac{ a} {1 -  \frac{2}{a} } = s _ \infty}}

 \implies{ \bold{  \frac{a}{ \frac{a - 2}{a} }  = s_  \infty }}

 \implies{ \bold{a \times  \frac{a}{a - 2} = s _  \infty }}

 \implies{ \bold{ \frac{ {a}^{2} }{a - 2}  = s_  \infty }}

_________________________

MORE YOU KNOW :➡️

  • {s_ n ={ \frac{a( {r}^{n} - 1) }{r - 1} { \sf{ \: if \:  r > 1 \: and \:{ \:  s_ n =  \frac{a(1 -  {r}^{n}) }{1 - r} if \:  |r|  < 1}}}}}

  •  \bold{a_n = a {r}^{n - 1}}

  • {{ \bold{ {  \frac{a}{1 - r}  =s _ \infty }}}}

_________________________

Similar questions