Math, asked by muralikrish03, 1 year ago

The first term of GP exceeds the second term by 1/2 and the sum to
infinity is 2. Find the GP.​

Attachments:

Answers

Answered by MysticSohamS
4

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ sequence \: of \: GP \\  \\ so \: for \: certain \: GP \\ let \: its \:  \\ first \: term \: be \: a \: and \: that \: of \: second \\ term \: be \:  \: ar \\  \\ according \: to \: first \: condition \\ a = ar +  \frac{1}{2}  \\  \\ a -  \frac{1}{2}  = ar \\  \\ar  =  \frac{2a - 1}{2}  \\  \\ r =  \frac{2a - 1}{2a}  \:  \:  \:  \:  \:  \:  \:  \: (1) \\  \\ according \: to \: second \: condition \\ we \: know \: that  \\ \: sum \: to \: infinity \: of \: a \: GP \\ is \: given \: by \\  \\ Sn =  \frac{a}{1 - r}  \\  \\ 2 =  \frac{a}{1 - r}  \\  \\  =  \frac{a}{1 -  (\frac{2a - 1}{2a}  \: )}  \\  \\  =  \frac{ \frac{a}{2a - 2a + 1} }{2a}  \\  \\  =    \frac{ \frac{a}{1} }{2a}  \\  \\ 2 = a.2a \\  \\ 2a {}^{2}  = 2 \\  \\ a {}^{2}  = 1 \\  \\ a = 1 \:  \: or \:  \: a =  - 1

if \: we \: take \: a = 1 \\ then \:  \: we \: get \\  \\ r =  \frac{2a - 1}{2a}  \:  \:  \: \:  \:  \:  \:  from \: (1) \\  \\  =  \frac{2(1) - 1}{2(1)}  \\  \\  =  \frac{2 - 1}{2}  \\  \\r  =  \frac{1}{2}

if \: we \: take \: a =  - 1  \\ then \\  \\ r =  \frac{2( - 1) - 1}{2( - 1)}  \\  \\  =  \frac{ - 2 - 1}{ - 2}  \\  \\  =   \frac{ - 3}{ - 2}   \\ \\ r =  \frac{3}{2}

but \: since \:  \: as \: here \\ sum \: to \: infinity \: of \: GP \: exists \\  |r|  < 1 \\  \\ if \: we \: take \:  \\ r =  \frac{3}{2}  \\  \\  \frac{3}{2} = 1.5  > 1 \\  \\ hence \: here \\ r = 1.5 \:  \: is \: absurd

thus \: then \\ required \: GP \: is \:  \\ 1, \frac{1}{2}  \: , \: and \: so \: on

Similar questions