Math, asked by ITzBrainlyKingTSK, 8 months ago

the first term of sequence is 3/8. If 'a' is a next term is 1-a/1+a then the 2007th term is

Attachments:

Answers

Answered by shadowsabers03
27

Let a be the k^{th} term of the sequence.

\longrightarrow t_k=a

Given that the next term is \dfrac{1-a}{1+a}, i.e., (k+1)^{th} term.

\longrightarrow t_{k+1}=\dfrac{1-a}{1+a}

Or,

\longrightarrow t_{k+1}=\dfrac{1-t_k}{1+t_k}

So, (k+2)^{th} term will be,

\longrightarrow t_{k+2}=\dfrac{1-t_{k+1}}{1+t_{k+1}}

\longrightarrow t_{k+2}=\dfrac{\left(1-\dfrac{1-a}{1+a}\right)}{\left(1+\dfrac{1-a}{1+a}\right)}

\longrightarrow t_{k+2}=\dfrac{\left(\dfrac{(1+a)-(1-a)}{1+a}\right)}{\left(\dfrac{(1+a)+(1-a)}{1+a}\right)}

\longrightarrow t_{k+2}=\dfrac{1+a-1+a}{1+a+1-a}

\longrightarrow t_{k+2}=\dfrac{2a}{2}

\longrightarrow t_{k+2}=a

\longrightarrow t_{k+2}=t_k

This means the terms are repeating at alternate positions as,

\longrightarrow t_1=t_3=t_5=\dots

\longrightarrow t_2=t_4=t_6=\dots

I.e., terms at odd positions are same. And terms at even position are same.

Therefore, we get,

\longrightarrow\underline{\underline{t_1=t_{2007}=\dfrac{3}{8}}}

Hence (C) is the answer.

Similar questions