Math, asked by ajitsingh1067, 9 months ago

The first term of two ap s are equal and the ratio of their common differences is 1 : 2 . if the 7th term of first ap and 21th ap are 23 and 125 respectively . find two ap s

Answers

Answered by BrainlyConqueror0901
20

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{First\:A.P=5,8,11,14,..}}}

\green{\tt{\therefore{Second\:A.P=5,11,17,23,..}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Ratio \: of \: common \: difference = 1 :  2 \\  \\ \tt:  \implies 7th \: term \: of \: first \:A.P = 23 \\  \\ \tt:  \implies 21th \: term \: of \: second \:A.P = 125 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies First \: A.P =?  \\  \\ \tt:  \implies Second \:A.P =?

• According to given question :

 \tt \circ \: a_{1}  =  a_{1_{o}} =a \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  d_{1} : d_{2} = 1 : 2 \\  \\ \tt:  \implies  \frac{d_{1}}{d_{2}}   = \frac{1}{2}  \\  \\ \tt:  \implies  d_{2} = 2 d_{1} -  -  -  -  - (1) \\  \\  \bold{For \: 7th \: term \: of \: first \: ap} \\ \tt:  \implies  a_{7} = 23 \\  \\ \tt:  \implies a + 6 d_{1} = 23 -  -  -  -  - (2) \\  \\  \bold{For \:21st\: term :   }\\  \\ \tt:  \implies  a_{21}  = 125 \\  \\ \tt:  \implies a +  20d_{2} = 125  \\  \\ \tt:  \implies a + 20 \times 2 d_{1} = 125 \\  \\ \tt:  \implies a + 40 d_{1} = 125 -  -  -  -  - (3)

  \text{Subtracting \: (1) \: from \: (2)} \\ \tt:  \implies 40 d_{1} - 6 d_{1} = 125 - 23 \\  \\ \tt:  \implies 34 d_{1} = 102 \\  \\ \tt:  \implies  d_{1} =  \frac{102}{34}  \\  \\  \green{\tt:  \implies  d_{1} = 3} \\  \\  \text{Putting \: value \: of \:}  d_{1} \text{ \: in \: (1)} \\ \tt:  \implies  d_{2} = 2 \times 3 \\  \\  \green{\tt:  \implies  d_{2} = 6} \\  \\  \text{Putting \: value \: of} \:  d_{1} \: \text{ in \: (2)} \\ \tt:  \implies a  + 6 \times 3 = 23 \\  \\ \tt:  \implies a = 23 - 18 \\  \\  \green{\tt:  \implies a = 5} \\  \\   \green{\tt \therefore First \:A.P = 5,8,11,14,....} \\  \\ \green{\tt \therefore Second \: A.P= 5,11,17,23,....}

Answered by ғɪɴɴвαłσℜ
12

\huge\sf\pink{Answer}

☞ First AP = 5,8,11,14...

☞ Second AP = 5,11,17,23...

\rule{110}1

\huge\sf\blue{Given}

➳ First term of 2 Aps are same

➳ Ratio of their common difference = 1:2

➳ 7 th term of the first AP = 23

➳ 21 st term of the second AP = 125

\rule{110}1

\huge\sf\gray{To \:Find}

➢ The two APs?

\rule{110}1

\huge\sf\purple{Steps}

❍ Let the First Term of Both APs be a.

❍ Common Difference of First AP be d and, of Second AP be 2d.

7 th term of the first AP

\dashrightarrow\sf T_n = a + (n - 1)d\\ \\ \dashrightarrow\sf T_7 = a + (7 - 1)d \\ \\\dashrightarrow\tt 23 = a + 6d \quad\dfrac{  \quad}{}eq.(1)

21st term of Second AP,

\dashrightarrow\sf T_n = a + (n - 1)d\\ \\ \dashrightarrow\sf T_{21} = a + (21 - 1)2d \\\\\dashrightarrow\sf 125 = a + 20 \times 2d\\\\\\\dashrightarrow\sf 125 = a + 40d\qquad\dfrac{\quad}{}eq.(2)

Subtracting eq(1) from eq(2)

\leadsto\sf a + 40d = 125\\\\ \leadsto\sf a + 6d = 23\\  \dfrac{\qquad\qquad\qquad \qquad \qquad}{}\\\leadsto\sf (40d - 6d) = (125 - 23)\\ \\ \leadsto\sf 34d = 102\\ \\ \leadsto\sf d = \cancel\dfrac{102}{34}\\\\\leadsto\green{\sf d = 3}

Putting the Values in Equation 1

\leadsto\sf 23 = a + 6d\\\\ \leadsto\sf 23 = a +6(3)\\\\ \leadsto\sf 23 = a + 18\\ \\ \leadsto\sf 23 - 18 = a\\ \\\leadsto\green{\sf a = 5}

 \underline{\bullet\:\textsf{First Arithmetic Progresion :}} \\\\\longrightarrow \sf a, (a + d), (a +2d), (a +3d)..\\\\ \longrightarrow\sf 5, (5 + 3), (5 + 2(3)),(5 + 3(3))..\\\\ \longrightarrow\large\sf\orange{ 5, 8,11,14..}

\underline{\bullet\:\textsf{Second Arithmetic Progresion :}}\\\\\longmapsto \sf a, (a + 2d), (a +2(2d)), (a +3(2d))..\\\\\longmapsto\sf 5, (5 + 2(3)), (5 + 2(6)), (5 + 3(6))..\\\\ \longmapsto\large\sf\orange{ 5, 11,17, 23..}

\rule{170}3

Similar questions