The first three terms in the expansion of a binomial are 1, 10, 40. find it.
Answers
Step-by-step explanation:
Expanding the terms of the binomial (a+b)^n, we get:
(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2+...
=1*a^n*1 + n*a^(n-1)*b^1 + [n*(n-1)/2]*a^(n-1)*b^2 + ...
= 1 + 10 + 40 + ...
Equating corresponding terms,
1 = 1*a^n*1.........................(1)
10 = n*a^(n-1)*b^1...............(2)
40 = [n*(n-1)/2]*a^(n-1)*b^2..(3)
From (1),
a^n = 1.
This is true:
for a=1 for any n,
for a=-1 for even n,
for n=0. But this could not be a binomial with at least 3 terms.
Assume a=-1.........................(4)
Substituting for a in (2),
10 = n*(-1)^(n-1)*b^1
But this is only true for even n, so n-1 is odd, so
(-1)^(n-1) = -1,
so 10 = n*(-1)*b^1..............(5)
= -n*b
→b = -10 / n.......................(6)
Substituting for a and b in (3),
40 = [n*(n-1)/2]*(-1)^(n-1)*(-10/n)^2
= [n*(n-1)/2]*(-1)*(100/n^2)
= (n-1)*(-50/n)
→-40/50 = (n-1)/n = -4/5
→-40/50 = 5(n-1) = -4n
This has no solution for integer n, so the binomial theorem cannot be applied.
Assume a=1.........................(7)
Substituting for a in (2),
10 = n*1^(n-1)*b^1 = n*1*b = n*b
→b = 10 / n.........................(8)
Substituting for a and b in (3),
40 = [n*(n-1)/2]*1^(n-1)*(10/n)^2
= [n*(n-1)/2]*1*(100/n^2)
= (n-1)*(50/n)
→40/50 = (n-1)/n = 4/5
→5(n-1) = 4n.........................(6)
Solve for n, and you have all required information to complete the expansion of (a+b)^n.