the first three terms of an ap are respectively (3n-1),(3n+5) and (5n+1) find n
Please full explain
Answers
Answer:
\boxed{ \underline{\underline{\tt { Solution:-}} }} \: \blue✾
Solution:−
✾
\: \: \: \: \: \: \: \: \: \: \: \: \: \:
\footnotesize\tt{A.P = (3n-1) \: , (3n+5) \: and \: (5n+1) }A.P=(3n−1),(3n+5)and(5n+1)
\: \: \: \: \: \: \: \: \: \: \: \: \: \:
\footnotesize✾ \: \footnotesize\tt \blue{First \: term \: (a1) = (3n-1) \: }✾Firstterm(a1)=(3n−1)
\footnotesize ✾ \: \footnotesize\tt \blue{Second \: term \: (a2) = (3n+5) \: }✾Secondterm(a2)=(3n+5)
\footnotesize✾ \: \footnotesize\tt \blue{Third \: term \: (a3) = (5n + 1) \: }✾Thirdterm(a3)=(5n+1)
\: \: \: \: \: \: \: \: \: \: \: \: \: \:
\footnotesize\tt{Note - We \: know \: that \: if \: this \: is \: a \: ap \: then \: their \: common \: difference \: is \: also \: same}Note−Weknowthatifthisisaapthentheircommondifferenceisalsosame
\: \: \: \: \: \: \: \: \: \: \: \: \: \:
\footnotesize \tt \blue{So, \: we \: also \: write \: it \: as}So,wealsowriteitas
\: \: \: \: \: \: \: \: \: \: \: \: \: \: \:
\footnotesize \tt {a2 - a1 = a3 - a2}a2−a1=a3−a2
\footnotesize \tt {3n + 5 - (3n - 1)= 5n + 1 - (3n + 5)}3n+5−(3n−1)=5n+1−(3n+5)
\footnotesize \tt {3n + 5 - 3n + 1= 5n + 1- 3n - 5}3n+5−3n+1=5n+1−3n−5
\footnotesize \tt { \cancel3n + 5 - \cancel3n + 1= 2n - 4}
3
n+5−
3
n+1=2n−4
\footnotesize \tt { 6= 2n - 4}6=2n−4
\footnotesize \tt { - 2n = - 4 - 6}−2n=−4−6
\footnotesize \tt { - 2n = - 10}−2n=−10
\footnotesize \tt { \cancel - 2n = \cancel - 10}
−
2n=
−
10
\tt { n = \frac{10}{2} }n=
2
10
\tt { n = \cancel\frac{10}{2} }n=
2
10
\boxed{\underline { \underline{\footnotesize \tt { n = 5}}}} \: \footnotesize\blue✾
n=5
✾