Math, asked by rosterplan1, 1 month ago

the first three terms of an ap are respectively (3n-1),(3n+5) and (5n+1) find n

Please full explain​

Answers

Answered by Anonymous
11

 \boxed{   \underline{\underline{\tt { Solution:-}} }} \: \blue✾

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize\tt{A.P = (3n-1) \: ,  (3n+5)  \: and \:  (5n+1) }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \footnotesize✾ \: \footnotesize\tt \blue{First  \: term \: (a1)  = (3n-1) \:  }

 \footnotesize ✾ \:  \footnotesize\tt \blue{Second  \: term \:  (a2)  =  (3n+5)  \: }

  \footnotesize✾ \: \footnotesize\tt \blue{Third  \: term \:  (a3)  =  (5n + 1)  \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize\tt{Note -  We  \: know \:  that \:  if  \: this \:  is \:  a  \: ap \:  then \:  their  \: common \:  difference \:  is \:  also \:  same}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt \blue{So,  \: we  \: also \:  write \:  it  \: as}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt {a2 - a1 = a3 - a2}

 \footnotesize \tt {3n + 5 - (3n - 1)= 5n  + 1 - (3n + 5)}

 \footnotesize \tt {3n + 5 - 3n  + 1= 5n  + 1- 3n   - 5}

 \footnotesize \tt { \cancel3n + 5 -  \cancel3n  + 1= 2n - 4}

 \footnotesize \tt { 6= 2n - 4}

 \footnotesize \tt {  - 2n =  - 4 - 6}

 \footnotesize \tt {  - 2n =  - 10}

 \footnotesize \tt {  \cancel - 2n = \cancel  - 10}

 \tt { n = \frac{10}{2} }

 \tt { n =  \cancel\frac{10}{2} }

 \boxed{\underline { \underline{\footnotesize \tt { n = 5}}}}  \:  \footnotesize\blue✾

Answered by AparnaSingh11989198
1

Answer:

\boxed{ \underline{\underline{\tt { Solution:-}} }} \: \blue✾

Solution:−

\: \: \: \: \: \: \: \: \: \: \: \: \: \:

\footnotesize\tt{A.P = (3n-1) \: , (3n+5) \: and \: (5n+1) }A.P=(3n−1),(3n+5)and(5n+1)

\: \: \: \: \: \: \: \: \: \: \: \: \: \:

\footnotesize✾ \: \footnotesize\tt \blue{First \: term \: (a1) = (3n-1) \: }✾Firstterm(a1)=(3n−1)

\footnotesize ✾ \: \footnotesize\tt \blue{Second \: term \: (a2) = (3n+5) \: }✾Secondterm(a2)=(3n+5)

\footnotesize✾ \: \footnotesize\tt \blue{Third \: term \: (a3) = (5n + 1) \: }✾Thirdterm(a3)=(5n+1)

\: \: \: \: \: \: \: \: \: \: \: \: \: \:

\footnotesize\tt{Note - We \: know \: that \: if \: this \: is \: a \: ap \: then \: their \: common \: difference \: is \: also \: same}Note−Weknowthatifthisisaapthentheircommondifferenceisalsosame

\: \: \: \: \: \: \: \: \: \: \: \: \: \:

\footnotesize \tt \blue{So, \: we \: also \: write \: it \: as}So,wealsowriteitas

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \:

\footnotesize \tt {a2 - a1 = a3 - a2}a2−a1=a3−a2

\footnotesize \tt {3n + 5 - (3n - 1)= 5n + 1 - (3n + 5)}3n+5−(3n−1)=5n+1−(3n+5)

\footnotesize \tt {3n + 5 - 3n + 1= 5n + 1- 3n - 5}3n+5−3n+1=5n+1−3n−5

\footnotesize \tt { \cancel3n + 5 - \cancel3n + 1= 2n - 4}

3

n+5−

3

n+1=2n−4

\footnotesize \tt { 6= 2n - 4}6=2n−4

\footnotesize \tt { - 2n = - 4 - 6}−2n=−4−6

\footnotesize \tt { - 2n = - 10}−2n=−10

\footnotesize \tt { \cancel - 2n = \cancel - 10}

2n=

10

\tt { n = \frac{10}{2} }n=

2

10

\tt { n = \cancel\frac{10}{2} }n=

2

10

\boxed{\underline { \underline{\footnotesize \tt { n = 5}}}} \: \footnotesize\blue✾

n=5

Similar questions