Math, asked by LEGENDVIPUL, 5 months ago

The first two figures bear a difinite relation with each other. Bearing that
relation in mind pickup the fourth figure from he answer figures.
MENTAL ABILITY​

Attachments:

Answers

Answered by akumar41864
1

Answer:

Explanation:

\begin{gathered}\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

Question:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

Given:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

ToFind:−

Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}\end{gathered}

Solution:−

\boxed{ \sf \blue{ suppose\: the \: angles \: be \: 2x \: and\: 3x }}

supposetheanglesbe2xand3x

\boxed{ \sf \orange{ we \: have \: adjacent \: angles \: of \: a \: parallelogram \: = 180}}

wehaveadjacentanglesofaparallelogram=180

\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}\end{gathered}

puttingallvalues:

\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}\end{gathered}

→3x+2x=180

→5x=180

→x=

5

180

→x=

5

180

→x=36

\begin{gathered}\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}\end{gathered}

→3x

→3×36

→108

→2x

→2×36

→72

\sf \large\underline{ \blue{verification }}

verification

\begin{gathered}\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†\end{gathered}

→3x+2x=180

→3×36+2×36=180

→108+72=180

→180=180

henceverified

→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†

Similar questions