Physics, asked by dashsrirupa, 2 months ago

the focal length of a concave mirror is 20 cm. Find the position of an object in front of the mirror so that the real image is two times the size of the object​

Answers

Answered by allysia
67

Answer:

The object is placed 30 cm before the mirror.

Explanation:

Given focal length= -20 cm (convex mirrors have -ve focal lengths)

Since image is real the magnification =

 \dfrac{v}{u}  = 2

v = 2u

Using mirror formula:

 \dfrac{1}{f}  =  \dfrac{1}{u}  + \dfrac{1}{v}

 -  \dfrac{1}{20}  =  \dfrac{1}{u}  +  \dfrac{1}{2u}  \\  -  \dfrac{1}{20}  =  \dfrac{3}{2u}  \\ u =  - 30

Therefore the object is placed 30 cm before the mirror.

Answered by BrainlyRish
33

Given : The focal length of a concave mirror is 20 cm & the real image is two times the size of the object .

Exigency To Find : Position of an object in front of mirror .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

》 The Focal Length of mirror is -20 cm [ as , Concave mirror focal length is always in negative '-ve' ]

》 The size of real image is two times the size of the object .

\qquad:\implies \sf Size_{(\:Real\:image\:)} \:\:(\:or \:Magnification \:\:'M'\:)\: = \dfrac{v}{u} =\: 2 \:\\\\\:\:\qquad [\:\because \sf\: image \:\:is\:\bf\:real\:\:]\\\\\\

\qquad:\implies \sf Magnification \: = \dfrac{v}{u} =\: 2 \:\\\\

\qquad:\implies \sf \dfrac{v}{u} =\: 2 \:\\\\

\qquad:\implies \sf v =\: 2u \:\\\\

\qquad:\implies \sf v \:\:( \:or\:image \:Distance \:\:)\:=\: 2u \:\\\\

\qquad :\implies \pmb{\underline{\purple{\:v \:\:( \:or\:image \:Distance \:\:)\:=\: 2u\:  }} }\:\:\bigstar \\\\

⠀⠀⠀⠀⠀Finding the object distance :

\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\ \qquad\maltese\:\:\bf By \: Mirror\:Formula\:\::\\

\qquad \dag\:\:\bigg\lgroup \sf{ \qquad \dfrac{1}{f} \:\: =\:\:\dfrac{1}{v} \:+ \:\dfrac{1}{u}\qquad }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , f is the focal length, v is the image distance & u is the object distance.

\qquad \dashrightarrow \:\sf \qquad \dfrac{1}{f} \:\: =\:\:\dfrac{1}{v} \:+ \:\dfrac{1}{u}\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \:\sf \qquad \dfrac{1}{(-20)} \:\: =\:\:\dfrac{1}{2u} \:+ \:\dfrac{1}{u}\\\\

\qquad \dashrightarrow \:\sf \qquad -\dfrac{1}{20} \:\: =\:\:\dfrac{1}{2u} \:+ \:\dfrac{1}{u}\\\\

\qquad \dashrightarrow \:\sf \qquad -\dfrac{1}{20} \:\: =\:\:\dfrac{1}{2u} \:+ \:\dfrac{1}{u}\\\\

\qquad \dashrightarrow \:\sf \qquad -\dfrac{1}{20} \:\: =\:\:\dfrac{3 }{2u} \:\\\\

\qquad \dashrightarrow \:\sf \qquad -2u(1) \:\: =\:\: 20 \times 3 \:\\\\

\qquad \dashrightarrow \:\sf \qquad -2u \:\: =\:\: 60 \:\\\\

\qquad \dashrightarrow \:\sf \qquad u \:\: =\:\: -30\: \:\\\\

\qquad \dashrightarrow \pmb{\underline{\purple{\:u \:\:( \:or\:object \:Distance \:\:)\:=\: - 30 \:cm\:  }} }\:\:\bigstar \\\\

⠀⠀⠀⠀⠀▪︎ Here u denotes position of an object ( or object distance ) which is -30 cm .

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Hence, \:The\:position \:of\:object \:is\:\bf -30\:cm\: }}\\

Similar questions