Physics, asked by koushik1234529, 2 months ago

The focal length of a convex lens is 15 cm. An object is placed at a distance 25cm

away from the optic centre. Calculate the distance of the image from the object. Also

calculate magnification​

Answers

Answered by SachinGupta01
3

\bf \underline{ \underline{\maltese\:Given} }

 \sf\Rrightarrow The \:  focal  \: length  \: of  \: a  \: convex \:  lens  \: (f)=  15 \:  cm

 \sf\Rrightarrow\sf An \:  object \:  distance \:  from  \: optic  \: centre  \: (u)= 25 \:  cm

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf\Rrightarrow Distance \:  of  \: the \:  image \:  from \:  the \:  object = \:  ?

 \Rrightarrow\sf Magnification = \:  ?

\bf \underline{ \underline{\maltese\:Solution  } }

\implies \boxed{ \sf\dfrac{1}{f} = \: \dfrac{1}{v}  -  \dfrac{1}{u} }

 \implies \sf \dfrac{1}{v} =\: \dfrac{1}{f}  +  \dfrac{1}{u}

 \implies \sf \dfrac{1}{v} =\: \dfrac{1}{15}  +  \dfrac{1}{ - 25}

 \implies \sf \dfrac{1}{v} =\: \dfrac{1}{15}   -  \dfrac{1}{ 25}

 \implies \sf \dfrac{1}{v} =\: \dfrac{5}{75}   -  \dfrac{3}{75}

 \implies \sf \dfrac{1}{v} =\: \dfrac{5  -  3}{75}

\implies \sf \dfrac{1}{v} =\ \dfrac{2}{75}

\implies \sf v =   \cancel\dfrac{75}{2}

\implies \sf v =   37.5  \: cm

 \sf  \Rrightarrow \underline{Hence, \:image  \: distance \: (h_i)= 37.5 \  \: cm}

 \bf \underline{Now},

 \sf We\: are \: said \: to \: magnify..

 \sf Magnification = \dfrac{Height \: of \: image \: \:(h_i)}{H eight \: of \: object \:\: (h_o)}

\sf\implies m = \dfrac{37.5}{25}

\sf\implies  m = 1.5

 \sf\Rrightarrow \underline{Hence, \:Magnification \: (m)= 1.5}

Similar questions