Physics, asked by phultushibls4212, 1 year ago

The focal length of a mirror is given by 1f=1u+1v where u and v represent object and image distances respectively,The maximum relative error in f is ?

Answers

Answered by Agastya0606
3

Given: The focal length of a mirror is given by 1/f = 1/u + 1/v.

To find: The maximum relative error in f?

Solution:

  • Now we have given the equation 1/f = 1/u + 1/v where u and v represent object and image distances respectively. The equation can be written as:

            1/f = (u + v)/uv

            f = (uv)( u + v) ^-1

  • Now we have obtained this term. So taking log on both sides, we get:

            log f = log { (uv)( u + v) ^-1 }

            log f = log u + log v + log ( u + v) ^-1

            log f = log u + log v - log ( u + v)

  • Now differentiate it with respect to the individual variable, we get:

           Δf/f = Δu/u ± Δv/v ± Δ( u + v)/ u + v

           Δf/f = Δu/u ± Δv/v ± (Δu + Δv)/ u + v

           Δf/f = Δu/u ± Δv/v ± Δu / (u + v ) ± Δv / (u + v)

  • Now maximum error will be:

           Δf = f(bar)

           ± √{ (Δu/u)² + (Δv/v)² + (Δu/u + v)² + (Δv/u + v)² }

Answer:

          The maximum relative error in f is

          ± √{ (Δu/u)² + (Δv/v)² + (Δu/u + v)² + (Δv/u + v)² }

Answered by topwriters
0

Δf  = f⁻ +- √[(Δu/u)² + (Δv/v)² + (Δv/v+u)² + (Δu/v+u)²]

Explanation:

Given: 1/f = 1/u + 1/v

Find: Maximum relative error in f

Solution:

1/f = 1/u + 1/v

1/f = (v + ) / uv

f = uv (v + u)⁻¹

Taking log on both sides:

log f = log u + log v + log (v+u)⁻¹

 log f = log u + log v - log (v+u)

Differentiating, we get:

Δf/f = Δu/u +- Δv/v +- Δ(v+u)/(v+u)

Δf is the error in f.

Assuming that the error in each independent variable is sufficiently small, we get:

Δf/f = Δu/u +- Δv/v +- (Δv + Δu)/(v+u)

Δf/f = Δu/u +- Δv/v +- Δv/(v+u) +- Δu/(v+u)

Maximum average error:

Δf  = f⁻ +- √[(Δu/u)² + (Δv/v)² + (Δv/v+u)² + (Δu/v+u)²]

Similar questions