Math, asked by lalit1510, 3 months ago

The following determinants are obtained from the

simultaneous equations in variables x and y.

Dx = - 11 a

9 -4

Dy= 3 - 11

b 9

D= 3 2

7 -4

The solutions of the equation are x = - 1 and y = - 4. Find the values of a and b.

Also find original simultaneous equation having this solution.​

Answers

Answered by MaheswariS
54

\textbf{Given:}

\mathsf{D_x=\left|\begin{array}{cc}-11&a\\9&-4\end{array}\right|}

\mathsf{D_y=\left|\begin{array}{cc}3&-11\\b&9\end{array}\right|}

\mathsf{D=\left|\begin{array}{cc}3&2\\7&-4\end{array}\right|}

\textsf{Solution is x=-1 and y=-4}

\textbf{To find:}

\textsf{Values of a and b}

\textbf{Solution:}

\mathsf{D_x=\left|\begin{array}{cc}-11&a\\9&-4\end{array}\right|}

\mathsf{D_x=44-9a}

\mathsf{D_y=\left|\begin{array}{cc}3&-11\\b&9\end{array}\right|}

\mathsf{D_y=27+11b}

\mathsf{D=\left|\begin{array}{cc}3&2\\7&-4\end{array}\right|}

\mathsf{D=-12-14=-26}

\textsf{By Cramer's rule,}

\mathsf{x=\dfrac{D_x}{D}}

\implies\mathsf{-1=\dfrac{44-9a}{-26}}

\implies\mathsf{26=44-9a}

\implies\mathsf{26-44=-9a}

\implies\mathsf{-18=-9a}

\implies\mathsf{a=\dfrac{-18}{-9}}

\implies\boxed{\mathsf{a=2}}

\mathsf{y=\dfrac{D_y}{D}}

\implies\mathsf{-4=\dfrac{27+11b}{-26}}

\implies\mathsf{104=27+11b}

\implies\mathsf{77=11b}

\implies\mathsf{b=\dfrac{77}{11}}

\implies\boxed{\mathsf{b=7}}

\mathsf{Also,\;the\;equations\;are\;}

\mathsf{3x+2y=-11}

\mathsf{7x-4y=9}

Answered by Shuvajit124
7

Answer:

Here is your answer

Step-by-step explanation:

Attachments:
Similar questions