Math, asked by pawansembhi1512, 2 days ago

The following equation is equals to:-
 \frac{1}{ \csc(1 -  \cot ) } +  \frac{1}{ \sec(1 -  \tan ) }

Answers

Answered by Anonymous
62

Before starting this question I would like to state that you should take these trigonometrical ratios with respect to an angle for ease. Here, we'll take A as respective angle.

Question

The following equation is equals to :-

{ \mathcal{\dfrac{1}{ \cosec A(1 - \cot A ) } + \dfrac{1}{ \sec A(1 - \tan A)}}}

Answer

 =  \rm( \sin A +  \cos A)

Solution

We know that sinA = 1/cosecA & cosA = 1/secA ( reciprocal relation )

 \rm \dfrac{ \sin A}{1 -  \cot A}  +  \dfrac{ \cos A}{1 - tan A}

Also, from Quotient Relation ,

tanA = sinA/cosA & cotA = cosA/sinA

 =  \rm \dfrac{ \sin A}{1 -  \dfrac{ \cos A}{ \sin A} }  +  \dfrac{ \cos A}{1 -  \dfrac{ \sin A}{ \cos A} }

 \rm{ =  \dfrac{ \sin A}{\dfrac{ \sin A -  \cos A}{ \sin A}}  +  \dfrac{ \cos A}{ \dfrac{ \cos A -  \sin A}{ \cos A}  } }

 =   \rm\dfrac{ \sin {}^{2} A}{ \sin A - cos A}   +   \dfrac{ \cos {}^{2} A }{ \cos A -  \sin A}

Note that in order to make a common base I.e sinA - cosA , we will rearrange the second term

 =   \rm\dfrac{ \sin {}^{2} A}{ \sin A - cos A}    -    \dfrac{ \cos {}^{2} A }{ \sin A -  \cos A}

 =   \rm\dfrac{ \sin {}^{2} A -  \cos {}^{2}A }{ \sin A -  \cos A}

 =   \rm\dfrac{  \cancel{(\sin  A -  \cos A})(\sin  A  +  \cos A)  }{  \cancel{\sin A -  \cos A}}

 =  \rm( \sin A +  \cos A)

Hence , we get the required value obtained after simplifying the above trigonometrical equations

  \underline{\rule{190pt}{2pt}}

Thankyou

Similar questions