Math, asked by nayakharshith381, 1 month ago

The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, can and mode of the data and compare them Monthly consumption 65-85 85-105 105-125 125-145 145-165 105-125 125-145 145-165 165-18 1183-305 Number of consumers 3 13 8​

Answers

Answered by goodboy9953
3

Answer:

= 137.05 Units

Step-by-step explanation:

Answer

Monthly consumption (in units)

Number of consumers f

i

Cumulative frequency

65-85

4

4

85-105

5

9

105-125

13

22

125-145

20

42

145-165

14

56

165-185

8

64

185-205

4

68

Total

n=68

n=68 gives

2

n

=34

So, we have the median class (125-145)

l=125,n=68,f=20,cf=22,h=20

Median=l+{

f

2

n

−cf

}×h

=125+{

⋅20

34−22

}×20=137units.

(ii) Modal class is (25-145) having maximum frequency f

m

=20,f)1−13,f

2

=14,l=125 and h=20

Mode=l+{

2f

m

−f

1

−f

2

f

m

−f

1

}×h

=125+{

40−13−14

20−13

}×20=125+

13

7×20

=125+

13

140

=125+10.76=135.76units

(iii) n=68,a=135,h=20 and ∑f

i

u

i

=7

Monthly consumption (in units)

Number of consumers

Class mark x

i

u

i

=

20

x

i

−135

f

i

×u

i

65-85

4

75

-3

-12

85-105

5

95

-2

-10

105-125

13

115

-1

-13

125-145

20

135=a

0

0

145-165

14

155

1

14

165-185

8

175

2

16

185-205

4

195

3

12

Total

n=68

7

n=68,a=135,h=20 and ∑f

i

u

i

=7

By step-deviation method.

Mean=a+h×

n

1

×∑f

i

u

i

=135+20×

68

1

×7

=135+

17

35

=135+2.05=137.05units.

Similar questions