Math, asked by rudrahareshgupta, 2 months ago

The following observation are arranged in ascending order if median of the data is 58. Find the value of x. 28, 31, 48, 51, x, x + 4, 72, 78; 84, 95​

Answers

Answered by XxMrZombiexX
132

Answer:

x = 56

Step-by-step explanation:

\huge\blue{\sf{\underline{\underline {Given \:  that  :  -  -  }}}}

  • 28 , 31 , 48 , 51 , x , x + 4, 72 , 78 , 84 , 95

\huge\blue{\sf{\underline{\underline {To \:  Find  :  -  -  - }}}}

  • Find the Value of x ?

\huge\green{\sf{\underline{\underline {Solution: ---}}}}

 \large \orange{ \: \tt Given \:  observation  \: are  : }

 \qquad \qquad   \sf \: 28, 31, 48, 51, x, x + 4, 72, 78, 84, 95

Total number of observations = n = 10 ( which is even number )

Since number of observation is even. Therefore

 \red{ \boxed{ \sf \: Median = \dfrac{ \bigg \lgroup\dfrac{ n}{2}  {\bigg \rgroup}^{th} observation \:  +\bigg \lgroup  \dfrac{n}{2} + 1\bigg \rgroup ^{th}observation  }{2} }}

Putting value of n which is (10)

  \longrightarrow { \sf \: Median = \dfrac{ \bigg \lgroup\dfrac{ 10}{2}  {\bigg \rgroup}^{th} observation \:  +\bigg \lgroup  \dfrac{10}{2} + 1\bigg \rgroup ^{th}observation  }{2} } \\  \\  \\  \\  \\     \longrightarrow \sf \: Median = \dfrac{ \bigg \lgroup \cancel\dfrac{ 10}{2}  {\bigg \rgroup}^{th} observation \:  +\bigg \lgroup   \cancel\dfrac{10}{2} + 1\bigg \rgroup ^{th}observation  }{2}  \\  \\  \\   \\  \longrightarrow \sf \: Median = \dfrac{ \bigg \lgroup 5 {\bigg \rgroup}^{th} observation \:  +\bigg \lgroup   6\bigg \rgroup ^{th}observation  }{2}  \\  \\  \\

 \blue{ \large\longrightarrow \sf Media = 58 ( Given)}\\\\

 \qquad \qquad\longrightarrow \sf 58 =  \dfrac{x + (x + 4)}{2}  \\  \\  \\  \\ \qquad \qquad\longrightarrow \sf58 \times 2 = 2x + 4 \\  \\  \\  \\ \qquad \qquad\longrightarrow \sf116 = 2x + 4 \\  \\  \\  \\\qquad \qquad \longrightarrow \sf116 - 4 = 2x \\  \\  \\  \\\qquad \qquad \longrightarrow \sf112 = 2x \\  \\  \\  \\ \qquad \qquad\longrightarrow \sf2x = 112 \\  \\  \\  \\\qquad \qquad\longrightarrow \sf \: x =   \cancel\dfrac{112}{2}   \\  \\  \\  \\ \qquad \qquad\longrightarrow    \red{\underline{\boxed{\frak{x = 56} \: }}}

Hence the Value if x = 56

Similar questions