Math, asked by raj9544, 1 month ago

The following observations has been aranged in ascending order . If the median of the data is 27 , find the value of x 13,19,20,25,x,x+2,33,34,35,36​

Answers

Answered by mathdude500
4

Given Observations are

  • 13,19,20,25,x,x+2,33,34,35,36

Here,

  • Number of observations = 10

  • Median of 10 observations = 27

We know,

Median is given by,

\rm :\longmapsto\:\: Median = \dfrac{1}{2}\bigg( \bigg| {\dfrac{n}{2} }  \bigg|^{th} \: obs. +  \bigg |{\dfrac{n}{2} + 1} \bigg |^{th}\bigg)

On substituting the values, n = 10 and Median = 27

\rm :\longmapsto\:\: 27 = \dfrac{1}{2}\bigg( \bigg| {\dfrac{10}{2} }  \bigg|^{th} \: obs. +  \bigg |{\dfrac{10}{2} + 1} \bigg |^{th}\bigg)

\rm :\longmapsto\:54 =  {5}^{th}observation \: +  {6}^{th}observation

\rm :\longmapsto\:54 = x + x + 2

\rm :\longmapsto\:54 = 2x + 2

\rm :\longmapsto\:54 - 2 = 2x

\rm :\longmapsto\:52 = 2x

\bf\implies \:x = 26

Additional Information :-

Mean of n observations is

\bf \:Mean = \dfrac{Sum  \: of \:  observations}{Number \:  of \:  observations }

Mode :-

  • The observation which repeats maximum number of times.

Range :-

  • Range = Largest observation - Smallest observation

Answered by ItzSmartCanny
2

\huge\bf\underline\pink{Question}

The following observations has been arranged in ascending order . If the median of the data is 27 , Find the value of x 13,19,20,25,x,x+2,33,34,35,36

\huge\bf\underline\pink{Answer}

\large\sf\blue{Given:-}\sf Median\:of\:data=27

\large\sf\blue{Data:-}\sf 13,\:19,\:20,\:25,\:x\:,x+2\:,33\:,34\:,35\:,36

\sf{Number\:of\: observation=10(Even\: number)}

\large\sf\blue{To\:Find:-}Value of x

\large\sf\blue{Solution}

\red {\boxed{\sf{Median=\dfrac{\bigg(\dfrac{n}{2}\bigg){}^{th}\:term+\bigg (\dfrac{n}{2}+1 \bigg){}^{th}\:term}{2}}}}\\

Where n is the total number of observation

\sf:\implies 27=\dfrac{\bigg(\dfrac{10}{2}\bigg){}^{th}term+\bigg(\dfrac{10}{2}+1\bigg){}^{th}\:term}{2}\\ \\ \sf:\implies 27=\dfrac{(5){}^{th}term+(6){}^{th}term}{2}\\ \\\sf   \leadsto 5th\:term=x\\ \\ \sf   \leadsto 6th\:term=x+2\\ \\ \sf:\implies 27=\dfrac{x+x+2}{2} \\ \\ \sf:\implies 27\times 2=2x+2 \\ \\ \sf:\implies 54=2x+2\\ \\ \sf:\implies 2x=52\\ \\ \sf:\implies x=\cancel{\dfrac{52}{2}} \\ \\ \sf:\implies\red {\underline{x=26}}\\\\

\underline\purple{{\boxed{\mathsf{The \: value  \: of  \: x \: is = 26}}}}\\\\

Similar questions