Math, asked by iqulikhan, 11 months ago

The following observations have been arranged in ascending order. If the median of the data is 63, find the value of x.

29, 32, 48, 50, x, x+2, 72, 78, 84, 95.

Answers

Answered by Anonymous
20

Answer:

x=62

Step-by-step explanation:

median=(x+x+2)/2=63

=>2x+2=126

=>2x=124

=>x=62

HOPE IT HELPS,

PLEASE THANK , FOLLOW AND MARK AS BRAINLIEST.

Answered by TheProphet
13

Solution :

\bigstar Firstly, arrange the observations in ascending order.

29, 32, 48, 50, x, x + 2, 72, 78, 84, 95

If the number of observation (n) is even then formula of the median will;

\boxed{\bf{Median=\frac{\bigg(\frac{n}{2}\bigg)^{th} + \bigg(\frac{n}{2} +1\bigg)^{th} observation }{2} }}}}

A/q

\longrightarrow\sf{63=\dfrac{\bigg(\cancel{\dfrac{10}{2}}\bigg)^{th} + \bigg(\cancel{\dfrac{10}{2}}  +1\bigg)^{th}}{2} }\\\\\\\longrightarrow\sf{63=\dfrac{5^{th}+(5+1)^{th}}{2}} \\\\\\\longrightarrow\sf{63=\dfrac{5^{th} + 6^{th}}{2} }\\\\\\\longrightarrow\sf{63=\dfrac{x+x+2}{2}\:\:\bigg[\therefore 5^{th}\: term = x\: \: \&\: \:6^{th}\:term=x+2\bigg]}\\\\\\\longrightarrow\sf{63=\dfrac{2x+2}{2} }\\\\\\\longrightarrow\sf{63\times 2=2x+2}\\\\\longrightarrow\sf{126=2x+2}\\\\

\longrightarrow\sf{2x=126-2}\\\\\longrightarrow\sf{2x=124}\\\\\longrightarrow\sf{x=\cancel{124/2}}\\\\\longrightarrow\bf{x=62}

Thus;

The value of x will be 62 .

Similar questions