the following observations have been arranged in ascending order .If the median of data is 78 find the value of x. 44,47, 63,x+13,87,93,99,110
Answers
Now we have to find the value of x in the given data
Where n is the total number of observation
The value of x is 56
So 4th observation=56+13= 69
Answer:
\huge\mathbb{\underline{SOLUTION:-}}
SOLUTION:−
\sf\underline{\pink{\:\:\:\: Given\:\:\:\:}}
Given
\begin{gathered}\begin{gathered}\sf\bullet Median\:of\:data=78\\ \\ \sf\:\:\:\:\bullet\:\:Data\:is\\ \\ \sf\:\: 44,\:47,\:63,\:x+13,\:87\:,93\:,99\:,110\end{gathered}\end{gathered}
∙Medianofdata=78
∙Datais
44,47,63,x+13,87,93,99,110
Now we have to find the value of x in the given data
\sf\bullet{\purple{Number\:of\: observation=8(even\: number)}}∙Numberofobservation=8(evennumber)
\boxed{\sf{Median=\dfrac{\bigg(\dfrac{n}{2}\bigg){}^{th}\:term+\bigg (\dfrac{n}{2}+1 \bigg){}^{th}\:term}{2}}}
Median=
2
(
2
n
)
th
term+(
2
n
+1)
th
term
Where n is the total number of observation
\sf\underline{\red{\:\:\:\: Solution\:\:\:\:}}
Solution
\begin{gathered}\begin{gathered}\sf:\implies 78=\dfrac{\bigg(\dfrac{8}{2}\bigg){}^{th}term+\bigg(\dfrac{8}{2}+1\bigg){}^{th}\:term}{2}\\ \\ \sf:\implies 78=\dfrac{\bigg(\dfrac{8}{2}\bigg){}^{th}term+\bigg(\dfrac{10}{2}\bigg)th\:term}{2}\\ \\ \sf\implies78= \dfrac{4th\:term+5th\:term}{2}\\ \\ \sf\bullet 4th\:term=x+13\\ \\ \sf\bullet 5th\:term=87\\ \\ \sf:\implies 78=\dfrac{x+13+87}{2}\\ \\ \sf:\implies 78\times 2=x+100\\ \\ \sf:\implies 156=x+100\\ \\ \sf:\implies x=156-100\\ \\ \sf:\implies x=56\end{gathered}\end{gathered}
:⟹78=
2
(
2
8
)
th
term+(
2
8
+1)
th
term
:⟹78=
2
(
2
8
)
th
term+(
2
10
)thterm
⟹78=
2
4thterm+5thterm
∙4thterm=x+13
∙5thterm=87
:⟹78=
2
x+13+87
:⟹78×2=x+100
:⟹156=x+100
:⟹x=156−100
:⟹x=56
The value of x is 56
So 4th observation=56+13= 69
\huge\mathfrak{\purple{x=56}}x=56