Math, asked by Mister360, 3 months ago

The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p/q what can you say about the prime factors of q?

(i) 43.123456789

(ii) 0.120120012000120000. . .

Answers

Answered by aarivukkarasu
51

Step-by-step explanation:

Given :-

The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p/q what can you say about the prime factors of q?

To Find :-

(i) 43.123456789

(ii) 0.120120012000120000.

Solution :-

(i) 43.123456789

=> Method 1 :-

43.123456789 is terminating.

So, it would be a rational number.

43.123456789 =  \frac{43123456789}{1000000000}  \\  \\  =  \frac{43123456789}{ {(10)}^{9} }  \\  \\  =  \frac{43123456789}{ {(2 \:  \times  \: 5)}^{9} }  \\  \\  =  \frac{43123456789}{ {2}^{9}  \times  \:  {5}^{9} }  \\  \\

Hence, 43.123456789 is now in the form of p/q and the prime factors of q are in the terms of

2 and 5.

=> Method 2 :-

43.123456789 is terminating.

So, it would be a rational number.

In a terminating expansion of p/q, q is the form of

 {2}^{n}  \: \:    {5}^{m}

So, the prime factors of q will be 2 or 5 or both only.

(ii) 0.120120012000120000

0.120120012000120000 is not terminating and non-repeting.

So, it is not a rational number.

Attachments:
Answered by BrainlyHeartbeat1234
5195

\large{ \mathbb{ \colorbox{blac} { \boxed{ \boxed{ \colorbox{g} {-:Answer:-}}}}}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{red}{Given::}}}}}}

\pink{➠}{ \sf{Real  \: number}}

: : \implies{43.123456789}

: : \implies{120120012000120000...}

\large{ \pmb{ \underline{ \underline{\frak{ \color{bl}{To \:  find::}}}}}}

\pink{➠}{ \sf{Which \:  type  \: of  \: Real  \: number  \: is \:  this?? }}

\pink{➠}{ \sf{If \:  any \:  of \:  this  \: is  \: rational  \: number \:  then,what\:is\:prime \:  factor \:  }} \\

\sf{of \: q \: in \:  \frac{p}{q} ??  \:  \:  \:  \:  \:  \: }

\large{ \pmb{ \underline{ \underline{\frak{ \color{blue}{Conceptual  \: point::}}}}}}

\pink{➠}{ \sf{Rational \:  no. \:  is  \: written  \: in \:  \frac{p}{q}  \:  form\:and \: it \: is \:either \:}}

 \sf{ terminating - non \: repeating\:or \: non \: terminating \:  - repeating.}

\pink{➠}{ \sf{Irrational \:  no. \:  is   \: not\: written  \: in \:  \frac{p}{q}  \:  form\:and \: it \: is  }}

 \sf{non \: terminating - non \: repeating.}

\large{ \pmb{ \underline{ \underline{\frak{ \color{green}{According  \: to  \: Question::}}}}}}

 \pmb{ \bf{Let's  \: start \:  with  \: concepts!!! }}

\pink{➠}{ \sf{(i) \rm43.123456789}}

 \sf{Here \:  it \:  is \: terminating  \: decimal \: expansion. }

 \sf{So, it  \: would  \: be \:  rational  \: number. }

 \bf{Then, we \:  change  \: the \:  decimal \:  expansion \:  to  \: fraction. }

{: : \implies{ \sf{ \rm43.123456789 =  \frac{43123456789}{1000000000} }}}

{: : \implies{ \sf{ \rm43.123456789 =  \frac{43123456789}{ { {(10)}^{9} } } }}}

{: : \implies{ \sf{ \rm43.123456789 =  \frac{43123456789}{ { {(2 \times 5)}^{9} } } }}}

{: : \implies{ \sf{ \rm43.123456789 =  \frac{43123456789}{ { {2}^{9}  \times  {5}^{9} } } }}}

 \bf{After  \: that, it \:  is  \: in \:  the  \: form \:  of  \: \frac{p}{q}\:and \: the \: prime \: factor  }

 \bf{ \: is \: 2 \: and \: 5.}

\pink{➠}{ \sf{(ii) \rm \: 0.120012000120000...}}

 \sf{Here \:  it \:  is \: non \: terminating - non \: repeating \: decimal \: expansion. }

 \sf{So, it  \: would  \: be \:  irrational  \: number. }

Attachments:
Similar questions