Math, asked by samridhisamridhi8003, 10 months ago

The following table gives weekly consumption of electricity of 56 families : weekly consumption 0-10=16 10-20=12 20-30=18 30-40=6 40-50=4 find median

Answers

Answered by anitaalakh
6

Answer:

the median weekly consumption would be 20 units

pls mark me as brainliest

Answered by priyarksynergy
8

Given is the frequency distribution of electricity consumption, Find their median.

Explanation:

  • For the given distribution we have total frequencies and class size as, N=56\ \ \ \ \  C=10
  • The table for the frequency distribution and the cumulative frequencies is given below: Electricity \ units\ \ \ \ \ \ \ \ \ \ \ No.\ of \ families\ \ \ \ \ \ \ \ \  \ \ \ cf\\0-10\ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  \ \  \ \ \  \ \ \ 16\ \ \ \  \ \ \ \ \ \ \ \ \ \  \ \ \ \  \ \ \ \ \  \ \ \ 16\\10-20\ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  \ \  \ \ \  \ \ 12\ \ \ \  \ \ \ \ \ \ \ \ \ \  \ \ \ \  \ \ \ \ \  \ \ \ 28 \\20-30\ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  \ \  \ \ \  \ \ 18\ \ \ \  \ \ \ \ \ \ \ \ \ \  \ \ \ \  \ \ \ \ \  \ \ \ 46\\30-40\ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  \ \  \ \ \  \ 6\ \ \ \  \ \ \ \ \ \ \ \ \ \  \ \ \ \  \ \ \ \ \  \ \ \ \ \ \ 52\\40-50\ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  \ \  \ \ \  \ 4 \ \ \ \  \ \ \ \ \ \ \ \ \ \  \ \ \ \  \ \ \ \ \  \ \ \ \ \ \ 56  
  • Here we get the median class as, \frac{N}{2}=\frac{56}{2}=28\ \  \ \ \ \ \ \ \ \ \ ->median\ class : (10-20)  
  • Here, the lower boundary of the median class l=10 , cf of class before the median class F=16, frequency of the median class f_m=12.
  • Hence we know that median is given by, M_d=l+(\frac{\frac{N}{2}-F }{f_m} )C                 ->M_d=10+(\frac{28-16}{12})10\\ ->M_d=20        ------>Answer

Similar questions