Math, asked by samik3002, 11 months ago

The following table gives weights of
the students of two classes. Calculate
the coefficient of variation of the two
distributions. Which series is more variable?
Weight (in kg) Class A Class B
30-40 I 22 I 13
I 40-50
16 I 10
50-60 I 12 I 17

Answers

Answered by Alcaa
1

Answer:

CV of class A = 30.2%

CV of class B = 26.35%

Step-by-step explanation:

We are given the following table of weights of  the students of two classes ;

          Weight (in kg)        Class A          Class B

              30 - 40                  22                    13

               40 - 50                  16                     10

               50 - 60                  12                     17

Coefficient of variation formula = \frac{Standard deviation}{Mean} * 100

  • Coefficient of Variation of class A ;

          Mean =  \frac{22+16+12}{3} = 16.67

          Standard deviation = \sqrt{\frac{(22-16.67)^{2} +(16-16.67)^{2} + (12-16.67)^{2} }{3-1} } = 5.033

          C.V. =   \frac{Standard deviation}{Mean} * 100 = \frac{5.033}{16.67} * 100 = 30.2%

  • Coefficient of Variation of class B ;

           Mean = \frac{13+10+17}{3} = 13.33

           Standard deviation = \sqrt{\frac{(13-13.33)^{2} +(10-13.33)^{2} + (17-13.33)^{2} }{3-1} } = 3.512

           C.V. =   \frac{Standard deviation}{Mean} * 100 = \frac{3.512}{13.33} * 100 = 26.35%

Therefore, students of Class A has more variation in weights.

                                                                                                                                             

Similar questions