Math, asked by mahisingh6383, 4 months ago

the foot of a ladder is 15 metre away from a wall and its top reaches a window 20 m high.find the length of a ladder?​

Answers

Answered by brainlyofficial11
18

Let AC is the height of window from ground,

BC is the distance of ladder from the wall

and AB is the Length of the ladder

it is from a right angled triangle, here

  • AC = altitude = 20 m
  • BC = base = 15 m
  • AB = hypotenuse = x m

and now, by using Pythagoras theorem

  \bold{ : \implies {AC}^{2}  =  {BC}^{2}  +  {AB}^{2}} \\  \\  \bold{:  \implies  {x}^{2}  =  {15}^{2} +  {20}^{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \bold{:  \implies  {x}^{2}  = 225 + 400} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies  {x}^{2} = 625 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies x =  \sqrt{625} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies x = 25 \: m} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, Length of the ladder is 25 m

Attachments:
Similar questions