Math, asked by IShipWolfstar8434, 1 year ago

The foot of the ladder is 2 m away from a vertical wall. The height of the ladder is 1 /2 m less than the length of the ladder. Find the length of the ladder

Answers

Answered by BrainlyConqueror0901
8

CORRECT QUESTION :

The foot of the ladder is 2 m away from a vertical wall. The height of the wall is 1 /2 m less than the length of the ladder. Find the length of the ladder.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:ladder=4.25\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

  \green{\underline \bold{Given :}} \\   : \implies   \text{Length \: of \: ladder = 5 \: m} \\ \\  :   \implies  \text{Height\:of\:wall=Length\:of\:ladder-0.5\:m} \\  \\    \red{\underline \bold{To \: Find:}} \\  :  \implies  \text{Length\:of\: ladder = ?}

• Accroding to given question :

 \text{Let\:length\:of\:ladder=x\:m}\\\\\text{Height\:of\:wall=(x-0.5)m}\\\\\bold{In  \: \triangle \: ABC} \\   : \implies   {h}^{2}   =  {p}^{2}  +  {b}^{2}  \:  \:  \:   \:  \:  \:  \:  \: \text{(by \: phythagoras \: theoram}) \\  \\  :  \implies  {x}^{2}  =  {(x-\frac{1}{2})}^{2}  +  {2}^{2}  \\  \\  :  \implies x^{2} =  x^{2}+\frac{1}{4}-x  + 4 \\  \\  :  \implies 4x^{2} =4x^{2}+1-4x+16   \\  \\  :  \implies  4x^{2}-4x^{2}+4x  = 17\\ \\     : \implies x=  \frac{17}{4}  \\  \\  \green{: \implies  \text{x= 4.25\:m}}

Attachments:
Similar questions