Physics, asked by hs8396441, 2 months ago

the force of 10 N acts found 20 second on a body mass 2 kg initially at rest . calculate the angry required by the body and the work done by applied force​

Answers

Answered by Anonymous
3

Provided that:

  • Force = 10 Newton
  • Time taken = 20 seconds
  • Mass = 2 kilograms
  • Initial velocity = 0 m/s

To calculate:

  • The energy
  • Work done

Solution:

  • The energy = 10000 J
  • Work done = 10000 J

Using concepts:

  • Work-energy theorm
  • Kinetic energy formula
  • Force formula
  • First equation of motion
  • Power formula
  • Energy formula

Using formulas:

• According to work-energy theorm,

  • {\small{\underline{\boxed{\sf{W \: = K.E_v \: - K.E_u}}}}}

• Kinetic energy is given by,

  • {\small{\underline{\boxed{\sf{K.E \: = \dfrac{1}{2} \: mv^2}}}}}

• Force formula is mentioned below,

  • {\small{\underline{\boxed{\sf{F \: = ma}}}}}

• First equation of motion is below,

  • {\small{\underline{\boxed{\sf{v \: = u \: + at}}}}}

• Power is given by,

  • {\small{\underline{\boxed{\sf{P \: = \dfrac{W}{t}}}}}}

• Energy is given by,

  • {\small{\underline{\boxed{\sf{E \: = P \times t}}}}}

Where, W denotes work done, K.E_v denotes final kinetic energy, K.E_u denotes initial kinetic energy, F denotes force, m denotes mass, a denotes acceleration, v denotes final velocity, u denotes initial velocity, t denotes time, P denotes power, E denotes energy and K.E denotes kinetic energy.

Required solution:

~ Firstly let us calculate acceleration by using formula to calculate force!

:\implies \sf Force \: = Mass \times Acceleration \\ \\ :\implies \sf F \: = m \times a \\ \\ :\implies \sf F \: = ma \\ \\ :\implies \sf 10 = 2(a) \\ \\ :\implies \sf 10 = 2 \times a \\ \\ :\implies \sf \dfrac{10}{2} \: = a \\ \\ :\implies \sf 5 \: = a \\ \\ :\implies \sf a \: = 5 \: ms^{-2} \\ \\ :\implies \sf Acceleration \: = 5 \: ms^{-2}

Acceleration = 5 metre per second sq.

~ Now let's calculate final velocity by using first equation of motion!

:\implies \sf v \: = u \: + at \\ \\ :\implies \sf v \: = 0 + 5(20) \\ \\ :\implies \sf v \: = 0 + 100 \\ \\ :\implies \sf v \: = 100 \: ms^{-1} \\ \\ :\implies \sf Final \: velocity \: = 100 \: ms^{-1}

Final velocity = 100 metre per second

~ Now let's calculate the work done by using the work-energy theorm!

:\implies \sf Work \: done \: = Change \: in \: kinetic \: energy \\ \\ :\implies \sf W \: = K.E_v \: - K.E_u \\ \\ :\implies \sf W \: = \dfrac{1}{2} \: mv^2 - \dfrac{1}{2} \: mu^2 \\ \\ :\implies \sf W \: = \dfrac{1}{2} \times 2 \times 100 \times 100 - \dfrac{1}{2} \times 2 \times 0 \times 0 \\ \\ :\implies \sf W \: = \dfrac{1}{2} \times 2 \times 10000 - \dfrac{1}{2} \times 2 \times 0 \\ \\ :\implies \sf W \: = \dfrac{1}{2} \times 20000 - \dfrac{1}{2} \times 0 \\ \\ :\implies \sf W \: = 10000 - 0 \\ \\ :\implies \sf W \: = 10000 \: J \\ \\ :\implies \sf Work \: done \: = 10000 \: Joules

Work done = 10,000 J

~ Now by using power formula let's find out the power!

:\implies \sf P \: = \dfrac{W}{t} \\ \\ :\implies \sf Power \: = \dfrac{Work \: done}{Time} \\ \\ :\implies \sf Power \: = \dfrac{10000}{20} \\ \\ :\implies \sf Power \: = \dfrac{1000}{2} \\ \\ :\implies \sf Power \: = 500 \: Watts

Power = 500 Watts

~ Now finding energy!

:\implies \sf E \: = P \times t \\ \\ :\implies \sf Energy \: = Power \times Time \\ \\ :\implies \sf Energy \: = 500 \times 20 \\ \\ :\implies \sf Energy \: = 10000 \: Joules

Energy = 10,000 Joules

Similar questions