Physics, asked by elsakook9, 10 months ago

The force of attraction between the charges 0.4mC and -0.2mC is 2N. Find the distance between them.

Answers

Answered by Sharad001
41

Answer :-

 \implies  \boxed{\sf{r = 6 \times  {10}^{ - 3}  \: m \: } } \\ \bf{ or }\:  \\   \implies  \boxed{\sf{ r = 6 \: millimetre \: }} \:

To Find :-

→ Distance between two given charges .

Explanation :-

Given that :-

  • Force of attraction between charges (F) = 2 N

  •  \sf{q_{1} =  0.4 \:  \mu  \:  c \: }

  •  \sf{q_{2} =  0.2\:  \mu  \:  c \: }

  • Distance between them (r) = ?

We know that

→ force between two charge

  \implies \:  \boxed{ \sf{F =  \frac{1}{4 \pi\epsilon_{o} }  \:  \frac{q_{1} q_{2} }{ {r}^{2} } }}

therefore ,

  \because \sf{1 \mu =  {10}^{ - 6} } \:   \\  \therefore \:  \\   \implies \sf{2 = \frac{1}{4 \pi\epsilon_{o} }   \frac{0.2 \times 0.4 \times  {10}^{ - 12} }{ {r}^{2} } } \\   \\ \because \boxed{ \sf{\frac{1}{4 \pi\epsilon_{o} }  = 9 \times  {10}^{9} }} \\  \\  \implies \sf{ 2 = 9 \times  {10}^{9}  \: \times  \frac{8 \times  {10}^{ - 14} }{ {r}^{2} } } \\  \\  \implies \sf{2 \:  {r}^{2}  = 72  \times  {10}^{ - 5} } \\  \\  \implies \sf{ {r}^{2}  = 36 \times  {10}^{ - 5} } \\  \\  \implies \sf{  {r}^{2}  = 3.6 \times  {10}^{ - 4} }

 \implies \sf{r = 0.6 \times  {10}^{ - 2} } \\  \:  \\  \implies  \boxed{\sf{r = 6 \times  {10}^{ - 3}  \: m \: } } \\ \bf{ or }\:  \\   \implies  \boxed{\sf{ r = 6 \: millimetre \: }}

Hence , distance between the given charges is 6 millimetre .

Similar questions