Physics, asked by kpopfanboy, 1 month ago

The force of attraction between two objects of masses 2m amd m is F₁.When the object with mass 2m is replaced with another object of mass m/2 ,the new force of attraction is found to be F₂.The ratio of F₁:F₂ IS:-
(A)3:2 (B)2:3 (C)1:4 (D)=4:1​

Answers

Answered by Mimi49
1

Explanation:

Given :-

The force of attraction between two objects of masses 2m and m is F₁.

When the object of mass 2m is replaced with another object of mass m/2, the new force of attraction is found to be F₂ .

To Find :-

What is the ratio of F₁ : F₂.

Solution :-

\clubsuit\: \: \sf\bold{\blue{In\: the\: first\: case\: :-}}♣Inthefirstcase:−

As we know that :

\bigstar\: \: \sf\boxed{\bold{\pink{F_g =\: \dfrac{Gm_1m_2}{r^2}}}}\: \: \bigstar★

F

g

=

r

2

Gm

1

m

2

Gravitational Force (\sf F_gFg ) = F₁

First Mass (m₁) = 2m

Second Mass (m₂) = m

Distance between the centre of masses (r²) = r

According to the question by using the formula we get,

⟹ \: F < /p > < p > _ 1= \frac{g \: \times \: 2m \: \times \: m}{ {r}^{2} } < /p > < p >⟹F</p><p>

1

=

r

2

g×2m×m

</p><p>

\implies \sf F_1 =\: \dfrac{G \times 2m^2}{r^2}⟹F

1

=

r

2

G×2m

2

\implies \sf\bold{\purple{F_1 =\: \dfrac{2Gm^2}{r^2}\: ------\: (Equation\: No\: 1)}}⟹F

1

=

r

2

2Gm

2

−−−−−−(EquationNo1)

< /p > < p > \clubsuit\: \: \sf\bold{\blue{In\: the\: second\: case\: :-}} < /p > < p ></p><p>♣Inthesecondcase:−</p><p>

Given:-

Gravitational Force (\sf F_gFg ) = F₂

First Mass (m₁) = m/2

Second Mass (m₂) = m

Distance between the centre of masses (r²) = r

According to the question by using the formula we get,

⟹F < /p > < p > _2= \: \frac{g \times \frac{ m }{2} \: \times m }{ {r}^{2} }⟹F</p><p>

2

=

r

2

2

m

×m

\implies \sf F_2 =\: \dfrac{G \times \dfrac{m^2}{2}}{r^2}⟹F

2

=

r

2

2

m

2

⟹F_2= \: \frac{ \frac{ {gm}^{2} }{2} }{ {r}^{2} }⟹F

2

=

r

2

2

gm

2

\implies \sf F_2 =\: \dfrac{Gm^2}{2} \times \dfrac{1}{r^2}⟹F

2

=

2

Gm

2

×

r

2

1

\implies \sf\bold{\purple{F_2 =\: \dfrac{Gm^2}{2r^2}\: ------\: (Equation\: No\: 2)}}⟹F

2

=

2r

2

Gm

2

−−−−−−(EquationNo2)

From the equation no 1 and the equation no 2 we get,

\longrightarrow \sf \dfrac{F_1}{F_2} =\: \dfrac{\bigg\{\dfrac{2Gm^2}{r^2}\bigg\}}{\bigg\{\dfrac{Gm^2}{2r^2}\bigg\}}⟶

F

2

F

1

=

{

2r

2

Gm

2

}

{

r

2

2Gm

2

}

< /p > < p > < /p > < p > < /p > < p > \longrightarrow \sf \dfrac{F_1}{F_2} =\: \bigg\{\dfrac{2\cancel{Gm^2}}{\cancel{r^2}}\bigg\} \times \bigg\{\dfrac{2\cancel{r^2}}{\cancel{Gm^2}}\bigg\}</p><p></p><p></p><p>⟶

F

2

F

1

={

r

2

2

Gm

2

}×{

Gm

2

2

r

2

}

< /p > < p > < /p > < p > < /p > < p > \longrightarrow \sf \dfrac{F_1}{F_2} =\: \dfrac{2}{1} \times \dfrac{2}{1}</p><p></p><p></p><p>⟶

F

2

F

1

=

1

2

×

1

2

< /p > < p > < /p > < p > < /p > < p > \longrightarrow \sf \dfrac{F_1}{F_2} =\: \dfrac{2 \times 2}{1 \times 1}</p><p></p><p></p><p>⟶

F

2

F

1

=

1×1

2×2

< /p > < p > < /p > < p > < /p > < p > \longrightarrow \sf \dfrac{F_1}{F_2} =\: \dfrac{4}{1}</p><p></p><p></p><p>⟶

F

2

F

1

=

1

4

\longrightarrow \sf\bold{\red{F_1 : F_2 =\: 4 : 1}}⟶F

1

:F

2

=4:1

{\small{\bold{\underline{\therefore\: The\: ratio\: of\: F_1 : F_2\: is\: 4 : 1\: .}}}}

∴TheratioofF

1

:F

2

is4:1.

Hence, the correct options is option

pls mark the Brainliest and follow the instructions

Answered by rashmitamishtiroy
1

Answer:

I'm little bit fine ☹︎

Today Maa durga went home .... it's kinda sad

Similar questions