Math, asked by shellingkp4iopd, 1 year ago

The formula d=b2−4ac is used to calculate the discriminant.

Solve for b.




b=±√2ac−d

b=±√4ac−d

​ b=±√d−4ac

b=±√d+4ac

Answers

Answered by demon2001
42
b=±√(d+4ac)...........

shellingkp4iopd: thank youuu
demon2001: welcome....
Answered by skyfall63
8

\bold{b=\pm \sqrt{4 a c+d}}

Step-by-step explanation:

Let us define f(x)=a x^{2}+b x+c=0 be the quadratic polynomial

For finding the roots of the equation f(x) = 0, let us expand the equation as follows:

a x^{2}+b x+c=0

Divide the whole equation by a

x^{2}+\frac{b x}{a}+\frac{c}{a}=0

To convert the above in the form of (a+b)^{2}, add and subtract \left(\frac{b}{2 a}\right)^{2}

x^{2}+\frac{2 x b}{2 a}+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}=0

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0

Taking LCM of 4a^{2} and a

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}=0

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}=0

\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)

\left(x+\left(\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)\left(x+\left(\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)=0

There are two values for x here.

\left(x+\left(\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)=0 \text { or }\left(x+\left(\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)=0

x=-\left(\left(\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right) \text { or } x=-\left(\left(\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

The above implies that \sqrt{b^{2}-4 a c} is the discriminant which is the deciding factor for real, imaginary or equal roots.

If discriminant is = 0, roots are equal

If discriminant is > 0, roots are real

If discriminant is < 0, roots are imaginary

The given formula is d=b^{2}-4 a c

b^{2}-4 a c-d=0 is a quadratic polynomial in b with no  

For the above equation to be having real roots,

Discriminant > 0

Here,

\left(b^{2}-4 a c\right)=0-(4 \times 1 \times(-d-4 a c))=4 d+16 a c d

b^{2}-4 a c-d=0

Here there is only b^2 term, no b term available,  

b^{2}=4 a c+d

Taking square root on both sides

b=\pm \sqrt{4 a c+d}

Similar questions