The four angles of a quadrilateral are 2(x - 10.º. (x + 30), (x + 50)° and 2xº. Find all
the four angles.
Answers
Answer:
2x-20+x+30+x+50+2x=360
sum of angles of quadrilateral = 360
6x-60=360
6x=360+60
6x=420
x=420/6=70
2(x-10)= 2*(70-10)=120°
x+30=70+30=100°
x+50=70+50=120°
2*70=140°
The four angles are 120°,100°,120°,140°
hope it helps pls mark me as brainliest
Given :
The four angles of a quadrilateral are 2(x - 10)º, (x + 30)°, (x + 50)° and 2xº.
To Find :
All angles of the quadrilateral.
Solution :
Analysis :
We know that the sum of interior angles of quadrilateral is 360°. Using that information we will find the angles.
Explanation :
We know that all interior angles of a quadrilateral add upto 360°.
- 2(x - 10)°
- (x + 30)°
- (x + 50)°
- 2x°
☯ According to the question,
⇒ 2(x - 10)° + (x + 30)° + (x + 50)° + 2x° = 360°
⇒ (2x - 20)° + (x + 30)° + (x + 50)° + 2x° = 360°
Expanding the brackets,
⇒ 2x - 20 + x + 30 + x + 50 + 2x = 360
Arranging the variables,
⇒ 2x + x + x + 2x - 20 + 30 + 50 = 360
⇒ 6x - 20 + 80 = 360
⇒ 6x + 60 = 360
Transposing 60 to RHS,
⇒ 6x = 360 - 60
⇒ 6x = 300
⇒ x = 300/6
⇒ x = 50
∴ x = 50.
The angles :
- 2(x - 10)° = 2(50 - 10) = 2(40) = 2 × 40 = 80°
- (x + 30)° = (50 + 30)° = 80°
- (x + 50)° = (50 + 50) = 100°
- 2x° = 2 × 50 = 100°
The angles are 100°, 100°, 80°, 80°.
Verification :
LHS :
⇒ 2(x - 10)° + (x + 30)° + (x + 50)° + 2x°
⇒ 80° + 80° + 100° + 100°
⇒360°
RHS :
360°
∴ LHS = RHS.
- Hence verified.