The four angles of a quadrilateral are 3:4:8: 9
find the angles
Answers
Given :
- Ratio of angles of a quadrilateral are 3:4:8:9
To find :
- The angles
According to the question,
As we know,
That the sum of interior angle of a quadrilateral is 360°
So,
Let the ratio be 3x,4x,8x and 9x
→ Sum of all the ratio = Sum of interior angles of a quadrilateral
→ 3x + 4x + 8x + 9x = 360°
→ 24x = 360°
→ x = 360° ÷ 24
.°. x = 15°
So,the angles are :-
3x = 3 × 15° = 45°
4x = 4 × 15° = 60°
8x = 8 × 15° = 120°
9x = 9 × 15° = 135°
____________....
⋆ Verification :-
→ 3x + 4x + 8x + 9x = 360°
Putting the value of x = 15°
→ 3 × 15° + 4 × 15° + 8 × 15° + 9 × 15° = 360°
→ 45° + 60° + 120° + 135° = 360°
→ 360° = 360°
.°. L.H.S = R.H.S
Hence,Verified...
Answer:
The angels are 45°, 60°, 120°, 135°
Step-by-step explanation:
Let, the angles of a quadrilateral :
- 3x
- 4x
- 8x
- 9x
We know that,
Sum of angles of quadrilateral is 360°
So,
⇒ 3x + 4x + 8x + 9x = 360
⇒ 24x = 360
⇒ x = 360 / 24
⇒ x = 15
___________________________
★ Value of 3x :
⇒ 3 (15)
⇒ 3 × 15
⇒ 45
___________________________
★ Value of 4x :
⇒ 4 (15)
⇒ 4 × 15
⇒ 60
___________________________
★ Value of 8x :
⇒ 8 (15)
⇒ 8 × 15
⇒ 120
___________________________
★ Value of 9x :
⇒ 9 (15)
⇒ 9 × 15
⇒ 135
Therefore,
The angels are 45°, 60°, 120°, 135°