the four angles of a quadrilateral form an AP. if the sum of the first three angles is twice the fourth angle then find all the angles
Answers
Answered by
44
let the angles be A(a-2d) B(a-d) C(a+d) D(a+2d)
∠A+∠B+∠C+∠D=360°[angle sum property of quadrilateral]
a-2d+a-d+a+d+a+2d=360
4a=360
a=90
∠A+∠B+∠C=2∠D
a-2d+a-d+a+d=2(a+2d)
3a-2d=2a+4d
a=6d
90=6d
15=d
∠A=a-2d=90-2×15=60°
∠B=a-d=90-15=75°
∠C=a+d=90+15=105°
∠D=a+2d=90+2×15=120°
∠A+∠B+∠C+∠D=360°[angle sum property of quadrilateral]
a-2d+a-d+a+d+a+2d=360
4a=360
a=90
∠A+∠B+∠C=2∠D
a-2d+a-d+a+d=2(a+2d)
3a-2d=2a+4d
a=6d
90=6d
15=d
∠A=a-2d=90-2×15=60°
∠B=a-d=90-15=75°
∠C=a+d=90+15=105°
∠D=a+2d=90+2×15=120°
ansss:
hope it is helpful
Answered by
34
Answer:
Step-by-step explanation:
Please thank me
Attachments:
Similar questions