English, asked by shrutiagarwl90, 2 months ago

The four sides of a quadrilateral are in the ratio 2 : 3 : 4 : 5. if the perimeter of the quadrilateral is 280 cm, find the length of the four sides.​

Answers

Answered by Clαrissα
22

Given :

  • Four sides of a quadrilateral are in the ratio 2 : 3 : 4 : 5
  • Perimeter of the quadrilateral is 280 cm

To Find :

  • The length of four sides.

Calculation :

Here, it's given that four sides of a quadrilateral are in the ratio 2 : 3 : 4 : 5 and perimeter of the quadrilateral is 280 cm. And we have to calculate the length of four sides. Firstly, let's assume the ratios of lengths of sides as,

  • 2 = 2x
  • 3 = 3x
  • 4 = 4x
  • 5 = 5x

Now as we know that,

 \boxed{ \tt{Sum \: of \: all \: sides = Perimeter}}

So, by applying this formula, we will calculate the length of four sides of a quadrilateral.

 \implies \bf 2x + 3x + 4x + 5x = 280 \: cm \\

  • On adding the numbers,

 \implies \bf 14x = 280 \: cm \\

  • Transposing 14 to R.H.S and dividing 280 by 14

 \implies \bf x = \dfrac{280}{14} \\

  • On dividing the numbers,

 \implies\underline{\boxed{\bf{x = 20}}} \\

Therefore, the value of x is 20.

According to the Question,

Now, let us calculate the length of four sides of a quadrilateral.

 \dag Length of first side :

 \longrightarrow 2x = 2 × 20

 \longrightarrow 40 cm

 \dag Length of second side :

 \longrightarrow 3x = 3 × 20

 \longrightarrow 60 cm

 \dag Length of third side :

 \longrightarrow 4x = 4 × 20

 \longrightarrow 80 cm

 \dag Length of fourth side :

 \longrightarrow 5x = 5 × 20

 \longrightarrow 100 cm

Therefore,

  • The length of four sides are 40 cm, 60 cm, 80 cm and 100 cm.
Answered by SachinGupta01
19

Given :

 \sf \: Four  \: sides \:  of  \:a  \:  \: quadrilateral  \: are  \: in \:  the \:  ratio  \:  2  : 3 \:  :  4   :  5.

 \sf \: Perimeter  \: of \:  the \:  quadrilateral  \: is \:  280  \: cm.

To find :

 \sf \: We \:  have  \: to \:  find  \: the \:  length  \: of \:  the \:  four  \: sides.

So, Let's Start :

 \sf \: Let, \:  the \:  four \:  sides \:  of  \: a \:  quadrilateral  \: be, 2x,  \: 3x, \:  4x \:  and \:  5x.

 \sf \: \red{ It \:  is  \: Given \:  that \:  : }

 \bf \sf \: The  \: perimeter \:  of \:  the  \: quadrilateral  \: is  \: 280 \:  cm.

 \sf \: As  \: we \:  know  \: that \:  Perimeter \:  is  \: equal \:  to \:  sum \:  of \:  all \:  sides.

 \sf \: So, \:  2x  \: +  \: 3x \:  +  \: 4x  \: +  \: 5x \:  = \:  280 \: cm.

 \sf \rightarrow \:  14x   \:  = \:  280 \: cm.

 \sf \rightarrow \:  x   \:  = \:   \dfrac{280}{14}

 \sf \red{So, \:  the  \: value \:  of \:  x  \: is  \: 20. }

 \sf \:  \underline{Hence \:  the \:  four  \: sides  \: of \:  the \:  quadrilateral \:  are}  \: :

 \sf \longrightarrow \: 2x \:  = \:  2   \times  20 \:  =  \: 40  \: cm

 \sf \longrightarrow \: 3x  \: =  \: 3  \:  \times \:  20 \:  =  \: 60  \: cm

 \sf \longrightarrow \: 4x \:  =  \: 4  \:  \times  \: 20  \: =  \: 80  \: cm

 \sf \longrightarrow \: 5x \:  = \:  5  \:  \times   \: 20  \: = \:  100  \: cm

 \sf \therefore \: \underline{The\: length \:of \:four \:sides\: are\: }\::

 \sf \longrightarrow \purple{40\: cm,\: 60 \:cm,\: 80 \:cm \:and \:100 \:cm.}

 \sf \underline { Extra \: information }\::

In quadrilateral 'quad' mean four and 'lateral' means sides. A quadrilateral is a closed figure made up of four segments. In other words it is a polygon with four sides. It has four sides, four vertex and four angles.

Similar questions