Math, asked by chhayatikhe29, 3 months ago

the fourier cosine transform of f(x) = 2e^-5x+5e^-2x​

Answers

Answered by anuvaz
0

Answer:

Step-by-step explanation:

Answered by brokendreams
3

Step-by-step explanation:

Given: f(x) = 2e^{-5x} +  5e^{-2x}

To Find: Fourier Cosine Transform of f(x) = 2e^{-5x} +  5e^{-2x}

Solution:

  • Finding Fourier Cosine Transform (FCT) of the given function

Fourier Cosine Transform of the function f(x) is given by,

f_{c}(s) = \sqrt{\frac{2}{\pi}}  \int\limits^{\infty}_0 {f(x) cos(sx)} \, dx

Therefore, for the function f(x) = 2e^{-5x} +  5e^{-2x}, Fourier Cosine Transform is given by;

\Rightarrow f_{c}(s) = \sqrt{\frac{2}{\pi}}  \int\limits^{\infty}_0 {(2e^{-5x} +  5e^{-2x}) cos(sx)} \, dx

\Rightarrow f_{c}(s) = \sqrt{\frac{2}{\pi}}  \int\limits^{\infty}_0 {(2e^{-5x}) cos(sx)} \, dx + \sqrt{\frac{2}{\pi}}  \int\limits^{\infty}_0 {(5e^{-2x}) cos(sx)} \, dx

The terms (2e^{-5x}) cos(sx) and (5e^{-2x}) cos(sx) can either be integrated by using the 'by-parts' integration method or the following formula can be used to get the integral value:

\int\limits^{\infty}_0 {e^{ax} cos(bx) } \, dx = \frac{e^{ax}}{a^{2} + b^{2} } (a \ cos(bx) + b \ sin(bx))

Therefore,

\Rightarrow f_{c}(s) = \frac{2\sqrt{2}}{\pi} [ \frac{e^{-5x} (-5 \ cos(sx) + s \ sin(sx))}{(-5)^{2} + s^{2} } ]_{_{0}}^{^{\infty}} + \frac{5\sqrt{2}}{\pi} [ \frac{e^{-2x} (-2 \ cos(sx) + s \ sin(sx))}{(-2)^{2} + s^{2} } ]_{_{0}}^{^{\infty}}

\Rightarrow f_{c}(s) = \frac{2\sqrt{2}}{\pi} [ 0 - \frac{(-5)}{25 + s^{2} } ]+ \frac{5\sqrt{2}}{\pi}[ 0 - \frac{(-2)}{4 + s^{2} } ]

\Rightarrow f_{c}(s) = \frac{10\sqrt{2}}{\pi} [\frac{1}{25 + s^{2} } + \frac{1}{4 + s^{2} } ]

Hence, the Fourier Cosine Transform of 2e^{-5x} +  5e^{-2x} is

\Rightarrow f_{c}(s) = \frac{10\sqrt{2}}{\pi} [\frac{1}{25 + s^{2} } + \frac{1}{4 + s^{2} } ]

Similar questions