Math, asked by Dihnothankane, 6 months ago

The fourth term of an Arithmetic Progression (AP) is 12 and the tenth term is 24.find the 61st term of this AP.

Answers

Answered by SarcasticL0ve
26

Given :

  • Fourth term of an AP is 12
  • Tenth term of an AP is 24

⠀⠀

Need To find :

  • 61st term of AP?

⠀⠀

Solution :

  • Fourth term of an AP is 12

⠀⠀

\star\;{\boxed{\sf{a_4 = a + 3d}}}\\ \\

:\implies\sf 12 = a + 3d\\ \\

:\implies\sf a = 12 - 3d\qquad\qquad\bigg\lgroup\bf eq\;(1) \bigg\rgroup\\ \\

Also,

⠀⠀

  • Tenth term of an AP is 24

⠀⠀

\star\;{\boxed{\sf{a_{10} = a + 9d}}}\\ \\

:\implies\sf 24 = a + 9d\qquad\qquad\bigg\lgroup\bf eq\;(2) \bigg\rgroup\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Putting eq (1) in eq (2),

⠀⠀

:\implies\sf 24 = (12 - 3d) + 9d\\ \\

:\implies\sf 24 = 12 - 3d + 9d\\ \\

:\implies\sf 24 - 12 = 6d\\ \\

:\implies\sf 12 = 6d\\ \\

:\implies\sf d = {\dfrac{12}{6}}\\ \\

:\implies{\boxed{\sf{\purple{d = 2}}}}\;\bigstar\\ \\

Now, Putting value of d in eq (1),

⠀⠀

:\implies\sf a = 12 - 3(2)\\ \\

:\implies\sf a = 12 - 6\\ \\

:\implies{\boxed{\sf{\purple{a = 6}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Now, Finding 61st term of this AP,

⠀⠀

:\implies\sf a_{61} = a + 60d\\ \\

:\implies\sf a_{61} = 6 + 60(2)\\ \\

:\implies\sf a_{61} = 6 + 120\\ \\

:\implies{\boxed{\sf{\pink{a_{61} = 126}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;61^{st}\;term\;of\;this\;AP\;is\; \bf{126}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; \red{a_n + (n - 1)d}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \; \purple{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Sum\;of\;all\;terms\;of\;AP\;having\;last\:term\;as\;'l'\; = \; \pink{ \dfrac{n}{2}(a + l)}

Answered by shivamtiwari40
1

Answer:

a61=126

Step-by-step explanation:

see the given picture to understand the solution

Attachments:
Similar questions