Math, asked by nagarlakshay62, 7 days ago

The fourth vertex of the rectangle whose three vertices taken in order are (4, 1) (7, 4) (13, -2) is with answer 10 class
Chapter no 7

Answers

Answered by BrainlyZendhya
3

We know that a Rectangle has four vertices. According to the question, Let the unknown order be (x, y)

  • A = (4,1)
  • B = (7,4)
  • C = (13,-2)
  • D = (x, y)

This Problem can be solved using Midpoint Formula,

\boxed{Mid\:Point\:=\:({\dfrac{x_1\:+x_2}{2}}),({\dfrac{y_1\:+\:y_2}{2}})}

Midpoint of AC :

\implies\sf{Mid\:Point\:=\:({\dfrac{x_1\:+\:x_2}{2}}),({\dfrac{y_1\:+\:y_2}{2}})}

Points,

  • \sf{x_1\:=\:4,\:y_1\:=\:1,\:x_2\:=\:13\:and\:y_2\:=\:-2}

\implies\sf{Mid\:Point\:=\:({\dfrac{4\:+\:13}{2}}),({\dfrac{1\:+\:(-2)}{2}})}

\implies\sf{Mid\:Point\:=\:({\dfrac{4\:+\:13}{2}}),({\dfrac{1\:-\:2}{2}})}

\implies\sf{Mid\:Point\:=\:({\dfrac{17}{2}}),({\dfrac{-1}{2}})}----\:(1)

Midpoint of BD,

Points,

  • \sf{x_1\:=\:x,\:y_1\:=\:y,\:x_2\:=\:7\:and\:y_2\:=\:4}

\implies\sf{Mid\:Point\:=\:({\dfrac{x_1\:+\:x_2}{2}}),({\dfrac{y_1\:+\:y_2}{2}})}

\implies\sf{Mid\:Point\:=\:({\dfrac{x\:+\:7}{2}}),({\dfrac{y\:+\:4}{2}})}

Equalling it with (1),

\implies\sf{Mid\:Point\:=\:({\dfrac{x\:+\:7}{2}})\:=\:({\dfrac{17}{2}})}

\implies\sf{x\:+\:7\:=\:17}

\implies\sf{x\:=\:17\:-\:7}

\implies\sf{x\:=\:10}

Then,

\implies\sf{Mid\:Point\:=\:({\dfrac{y\:+\:4}{2}}),({\dfrac{-1}{2}})}

\implies\sf{y\:+\:4\:=\:-1}

\implies\sf{y\:=\:-1\:-\:4}

\implies\sf{y\:=\:-5}

Hence, the fourth vertex of the rectangle = (10, -5).

Note :

  • While viewing the answer, scroll towards right side to see full answer.
  • Refer the attachment for the figure

Attachments:
Similar questions