Math, asked by kumarraghav85, 11 months ago

• The fraction (5x-11)/(2x2 + x - 6) was obtained by adding the two fractions A/(x + 2) and B/(2x - 3). The values of A and B must be, respectively:

(a) 5x, -11, (b) -11, 5x, (c) -1, 3, (d) 3, -1, (e) 5, -11


SOLVE THIS. ​

Answers

Answered by rajsingh24
65

\huge{\underline{\underline{\mathfrak\green{Question\::}}}}

\bf{The\: fraction\: (5x-11)/(2x2 + x - 6) \:was \:obtained \:by \:adding,\:}

\bf{the \:two \:\:fractions\: A/(x + 2) \:and \:B/(2x - 3). \:The\: values \:of \:A \:and \:B \:must \:be, \:\:respectively:}

\bf{(a) 5x, -11}

\bf{ (b) -11, 5x}

\bf{(c) -1, 3}

\large\bf\blue{(d) 3, -1}

\bf{(e) 5, -11}

\huge{\underline{\underline{\mathfrak\red{Solution\::}}}}

 \: \implies\bf{ \frac{5x - 11}{2x {}^{2 }   + x - 6} } = { \frac{a}{x + 2} } +  \frac{b}{2x - 3}  \\  \: \implies\bf{ \frac{5x - 11}{(x + 2)(2x - 3)} } =  \frac{a(2x - 3) + b(x + 2)}{(x + 2)(2x  - 3)}  \\ \implies\bf{5x   - 11} = a(2x - 3) + b(x + 2) \\ \implies\bf{5x - 11} = (2a + b)x + (  - 3a + 2b)\\ \tiny\bf\blue{[ comparing \: the \: co - efficient \: of \: x \: and \: constant \: term \: in \: the \: both \: side]} \\ \implies \bf\:\red{ a + b \:  = 5 \: ------- \: (1)} \\ \implies \bf \: \green{ - 3a + 2b \:  =  - 11-----(2)} \\ \implies \bf \: \orange{b = 5 - 2a------- \: (3)} \\ \bf\:\tiny \purple \:{ put \: b = 5 - 2a \: in \: (2).} \\  \implies \bf  - 3a + b(5 - 2a) =  - 11 \\  \implies \bf  - 3a + 10 - 4a =  - 11 \\  \implies \bf \cancel - 7a = \cancel - 21 \\  \implies \bf\pink{\boxed{a = 3}} \\ \tiny\bf\purple{ \: put \:  \: a = 3 \:  \: in \ \: \:  (3).} \\ \implies\bf \: b = 5 - 2(3) \\ \implies\bf \: b = 5 - 6 \\ \implies\bf\red{\boxed{b =  - 1}}

\large{\underline{\underline{\mathbf\orange{Therefore , A = 3\: and\: B= -1.}}}}

Similar questions