Math, asked by dhawale614, 1 month ago

The frequency table of the tright of 20 children inaclass
is given below find the mean of their height.
height(in cm). frequency
151. 7
153. 4
155. 6
157. 3

Answers

Answered by naman2008k
0

Answer:

Given data:

The frequency chart of heights of few children in a class is as follows -

\begin{gathered} \: \: \: \: \: \: \: \begin{gathered} \footnotesize\boxed{\begin{array}{ c |c} \frak \red{ \pmb{height}}& \frak \red{ \pmb{frequency}}\\ \dfrac{\qquad\qquad}{ \sf{151 \: cm}}& \dfrac{\qquad\qquad}{ \sf{7}}& \\ \dfrac{\qquad\qquad}{ \sf{153 \: cm}}&\dfrac{\qquad\qquad}{ \sf{4}}& \\ \dfrac{\qquad\qquad}{ \sf{155 \: cm}}& \dfrac{\qquad\qquad}{ \sf{6}}& \\ \dfrac{\qquad\qquad}{ \sf{157 \: cm}}&\dfrac{\qquad\qquad}{ \sf{ 3}}& \\ \end{array}}\end{gathered}\end{gathered}

height

height

151cm

153cm

155cm

157cm

frequency

frequency

7

4

6

3

To find:

The mean of the children's heights.

CONCEPT:-

‎ ‎ ‎ ‎ ‎ ‎Here, the concept used is one of the three most commonly used measure of central tendency, i.e, Arithmetic Mean or Mean (A.M.). The arithmetic mean of a statistical data is defined as the quotient obtained when the sum of all the observations is divided by the total number of items.

If \sf{x_1, \: x_2, \: ... \: x_n}x

1

,x

2

,...x

n

are the \sf{n}n items given, then

\:\:\sf{A.M. = \dfrac{x_1 + x_2 + ... + x_n}{n} = \dfrac{\sum\limits_{i=1}^{n} x_i}{n}}A.M.=

n

x

1

+x

2

+...+x

n

=

n

i=1

n

x

i

or briefly,

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{ \dfrac{\sum x}{n}}

n

∑x

A.M. is usually denoted by \sf{ \overline{x}}

x

SOLUTION:-

As we're asked to find the mean height of the children, we can find it by substituting the values in the formula:

\small\boxed{ \sf{ \pmb{ A.M. = \dfrac{Sum \: of \: observations}{Total \: number \: of \: observations}}}}

A.M.=

Totalnumberofobservations

Sumofobservations

A.M.=

Totalnumberofobservations

Sumofobservations

Here, the we've to sum up the measures of heights of each and every individual and then divide them with the total number of students, i.e, the sum of values given as the frequencies in the frequency chart.

\begin{gathered}\longmapsto{ \sf{A.M. = \dfrac{(151 \times 7) + (153 \times 4) + (155 \times 6) +( 157 \times 3)}{7 + 4 + 6 + 3} }} \\ \\ \longmapsto{ \sf{ A.M. = \dfrac{1057 + 612 + 930 + 471}{7 + 4 + 6 + 3} }} \\ \\ \longmapsto{ \sf{ A.M. = \dfrac{1669 + 1401}{11 + 9} }} \\ \\ \longmapsto{ \sf{A.M. = \dfrac{307 \cancel{0}}{2 \cancel{0}}}} \\ \\ \longmapsto{ \sf{A.M. = \dfrac{ \cancel{307}}{ \cancel{2}} }}\\ \\ \longmapsto \underline{\boxed{ \tt{ \red{ \pmb{A.M. = 153.5}}}}}\end{gathered}

⟼A.M.=

7+4+6+3

(151×7)+(153×4)+(155×6)+(157×3)

⟼A.M.=

7+4+6+3

1057+612+930+471

⟼A.M.=

11+9

1669+1401

⟼A.M.=

2

0

307

0

⟼A.M.=

2

307

A.M.=153.5

A.M.=153.5

\begin{gathered} \\ \therefore \underline{ \sf{ \pmb{The \: mean \: height \: of \: the \: 20 \: children \: is \: \orange{153.5 \: cm} .}}}\end{gathered}

Themeanheightofthe20childrenis153.5cm.

Themeanheightofthe20childrenis153.5cm.

_________________________________________

Similar questions