The friction coefficient between the two blocks shown in figure is µ but the floor is smooth (a) what maximum horizontal force F can be applied without disturbing the equilibrium of the system? (b) suppose the horizontal force applied is double of that found in part(a) , find the acceleration of the two masses.
Suppose the entire system of this question is kept inside an elevator which is coming down with an acceleration a < g. Repeat parts (a) and (b).
Answers
First part.
(a). F = Fric. + T
Now, For T,
T = fric.
∴ F = fric. + fric.
⇒ F = 2 × friction.
⇒ F = 2 × μmg
∴ F = 2μmg
(b). If the Horizontal force applied will becomes twice, then,
F = 4μmg
⇒ 4μmg - T - μmg = ma
⇒ 3μmg - T = ma
For T,
T - μmg = Ma
⇒ T = mμg + ma
∴ 3μmg - mμg + Ma = ma
⇒ 3μmg - mμg - Ma = ma
⇒ a(M + m) = gμ(3m- m)
∴ a = 2mgμ/(M + m)
_________________________________
Now, If the System will be kept in the Elevator which is descending down then substitute the values of the g by (g - a).
(a). F = Fric. + T
Now, For T,
T = fric.
∴ F = fric. + fric.
⇒ F = 2 × friction.
⇒ F = 2 × μmg
∴ F = 2μmg
(b). If the Horizontal force applied will becomes twice, then,
F = 4μm(g - a)
⇒ 4μm(g - a) - T - μm(g - a) = ma
⇒ 3μm(g - a) - T = ma
For T,
T - μm(g -a) = Ma
⇒ T = mμ(g - a) + ma
∴ 3μm(g - a) - mμ(g - a)+ Ma = ma
⇒ 3μm(g -a) - mμ(g - a) - Ma = ma
⇒ a(M + m) = (g - a)μ(3m- m)
∴ a = 2m(g -a)μ/(M + m)
Hope it helps.