Math, asked by 2001roars, 2 months ago

the frustum is made up of metal sheet whose circular bases are covered . the upper and lower circular bases are 25 π cm ² & π cm² . if the height of a frustum is 3cm , then find the surface area of frustum and cost of metal sheet need if it cost Rs 500 per 100 cm ².​

Answers

Answered by mathdude500
6

Given :-

  • Height of frustum, h = 3 cm

  • Base Area of frustum of one end of radius, r = π cm²

  • Base Area of frustum of other end of radius, R = 25 π cm² .

To Find :-

  • Total Surface Area of Frustum

  • Cost of metal sheet needed if it cost Rs 500 per 100 cm² .

Formula Used :-

\rm :\longmapsto\:TSA_{(frustum)} = \pi\bigg( {R}^{2} +  {r}^{2} + (R + r)l   \bigg)

\rm :\longmapsto\:l =  \sqrt{ {(R - r)}^{2} +  {h}^{2}  }

where,

  • R = radius of upper end of frustum

  • r = radius of lower end of frustum

  • h = height of frustum

  • l = slant height is frustum

  • TSA = Total Surface Area

Solution :-

Given that,

  • Height of frustum, h = 3 cm

  • Base Area of frustum of one end of radius, r = π cm²

  • Base Area of frustum of other end of radius, R = 25 π cm² .

So,

\rm :\longmapsto\:\pi {r}^{2} = \pi

\rm :\longmapsto\:{r}^{2} =1

\bf\implies \:r = 11 \: cm

Also,

\rm :\longmapsto\:\pi {R}^{2}  = 25\pi

\rm :\longmapsto \:  {R}^{2}  = 25

\bf\implies \:R = 5 \: cm

So,

Slant height of frustum is

\rm :\longmapsto\:l =  \sqrt{ {(R - r)}^{2} +  {h}^{2}  }

\rm :\longmapsto\:l =  \sqrt{ {(5 - 1)}^{2} +  {3}^{2}  }

\rm :\longmapsto\:l =  \sqrt{ {4}^{2} +  {3}^{2}  }

\rm :\longmapsto\:l =  \sqrt{16 + 9  }

\rm :\longmapsto\:l =  \sqrt{25}

\bf\implies \:l = 5 \: cm

Hence,

\rm :\longmapsto\:TSA_{(frustum)} = \pi\bigg( {R}^{2} +  {r}^{2} + (R + r)l   \bigg)

\rm  \:  =  \: \:\pi\bigg( {5}^{2} +  {1}^{2} + (5 + 1) \times 5  \bigg)

\rm  \:  =  \: \:\pi\bigg(25 + 1 + 30\bigg)

\rm  \:  =  \: \:\dfrac{22}{7} \times 56

\rm  \:  =  \: \:22 \times 8

\rm  \:  =  \: \:176 \:  {cm}^{2}

\bf\implies \:TSA_{(frustum)}=  \: \:176 \:  {cm}^{2}

Hence,

Cost of metal sheet used to make a frustum is

\rm  \:  =  \: \:176 \times \dfrac{500}{100}

\rm  \:  =  \: \:176 \times 5

\rm  \:  =  \: \:880

Therefore,

  • Cost of metal sheet = Rs 880.

Additional Information :-

\rm :\longmapsto\:Volume_{(frustum)} = \dfrac{\pi \: h}{3}( {R}^{2} +  {r}^{2} + Rr)

\rm :\longmapsto\:CSA_{(frustum)} = \pi \: (R + r) \: l

\rm :\longmapsto\:l =  \sqrt{ {(R - r)}^{2} +  {h}^{2}  }

where,

  • R = radius of upper end of frustum

  • r = radius of lower end of frustum

  • h = height of frustum

  • l = slant height is frustum

  • CSA = Curved Surface Area

Similar questions