Math, asked by sunkireddyakshitha, 11 months ago

The function f(x) = tanx for x = 0; f(0) = 1 at x = 0

Answers

Answered by Anonymous
8

{ \red{ \underline{ \huge{ \mathfrak{answer}}}}}

fx = tanx

{lim}  \atop \: {h - 0}

 \frac{f(x + h) - f \: (x)}{h}

f (X + h) = tan (X+h)

{lim}  \atop  \: {h - 0} \:

 \frac{ \tan(x + h) -  \tan \: x ) }{0}

{lim} \atop \: {h - 0}

 \frac{ \frac{ \tan \: x +  \tan \: h }{1 -  \tan \: x \:  \tanh  } -  \tan \: x \frac{(1 -  \tan \: x \:  \tan \: h }{1 -  \tan \: x \:  \tan \: h  }  }{h}

{lim} \atop \: {h - 0}

 \frac{ \tan \: x \:   +  \tan \: h -  \tan \: x \:  +  { \tan \: }^{2} x \tan \: h   }{h \: (1 -  \tan \: x \:  \tan \: h) }

{lim} \atop \: {h - 0}

 \frac{ \tan \: (1 -  { \tan }^{2} x) }{h(1 -  \tan \: x \:  \tan \: h) }

{lim} \atop \: {h - 0}

 \frac{ \sin \: h }{h}  \frac{ { \sec }^{2}x }{ \cos \: h(1 -  \tan \: x \:  \tan \: h)   }

{lim} \atop \: {h - 0}

 \frac{ \sin \: h }{h}

{lim} \atop \: {h - 0}

 \frac{   { \sec}^{2} x }{ \cos \: h(1 -  \tan \: x \:  \tan \: h)}

1 \times   \frac{ { \sec}^{2} x}{1 \times (1 - 0)}

fx \:  =  {  \sec  }^{2} x

f(0) = sec²ⁿ

f(0) = 1

{ \green{ \underline{ \huge{  \mathcal{be \: brainly}}}}}

Similar questions