Math, asked by raihaanahabdussamad, 4 months ago

The function f(x)=x^3-p^2x^2+2x-p has a remainder of -5 when divided by (x+1).find the possible values f constant p

Answers

Answered by mathdude500
5

Answer:

p = - 2 or p = 1

Step-by-step explanation:

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{p(x) =  {x}^{3} -  {p}^{2}  {x}^{2}  + 2x - p } \\ &\sf{remainder \:  =  - 5}\\ &\sf{divisor \: x \:  +  \: 1} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{value \: of \: p}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

We know that

☆ If polynomial p(x) is divided by x + 1, then remainder is given by p(- 1).

 \boxed{ \purple{ \bf \: p( - 1) =  \tt \:  -  \: 5}}

\tt\implies \: {( - 1)}^{3}  -  {p}^{2}  {( - 1)}^{2}  + 2( - 1) - p =  - 5

\tt\implies \: - 1 -  {p}^{2}  - 2 - p =  - 5

\tt\implies \: { - p}^{2}  - p - 3 =  - 5

\tt\implies \: {p}^{2}  + p - 2 = 0

\tt\implies \: {p}^{2}  + 2p - p - 2 = 0

\tt\implies \:p( p + 2) - 1(p + 2) = 0

\tt\implies \:(p + 2)(p - 1) = 0

\tt\implies \: \boxed{ \purple{\bf \:  p \:  =  \:  -  \: 2 \:  \:  \: or \:  \:  \: p \:  =  \: 1}}

Similar questions