The function f(x)=x2 + sin x - 5, then
1. f(x) is continuous at all points
2. f(x) is discontinuous at X = Pi
3. it is discontinuous at X=Pi/2
4. none of the above
Answers
Answered by
5
Answer:
lt
f(x)=
x→π
+
lt
f(x)=f(π)
Left hand limit
x→π
−
lt
x
2
−sinx+5
Put x=π−h
x→π
−
lt
(π−h)
2
−sin(π−h)+5
x→π
−
lt
(π−h)
2
−sinh+5=π
2
−sin0+5[sin(π−x=sinx)]←IIndquad
x→π
−
lt
f(x)=π
2
+5
Right Hand limit
x→π
+
lt
x
2
−sinx+5
Put x=π+h
x→π
+
lt
(π+h)
2
−sin(π+h)+5
x→π
+
lt
(π+h)
2
+sinh+5 [sin(π+x)=sinx]←IIIquad
x→π
−
lt
=π
2
+5
If π=π
2
−sinπ+5=π
2
+5
Hence
x→π
−
lt
f(x)=
x→π
+
lt
f(x)=f(π)
So f(x) is continuous at x=π
Similar questions