Math, asked by lucasbonnett06, 10 months ago

The function h(x) is quadratic and h(3) = h(–10) = 0. Which could represent h(x)?
A.h(x) = x2 – 13x – 30
B.h(x) = x2 – 7x – 30
C.h(x) = 2x2 + 26x – 60
D.h(x) = 2x2 + 14x – 60

Answers

Answered by Anonymous
24

Answer:

D. h(x) = 2x^2 + 14x - 60

Step-by-step explanation:

Given that h(x) is a quadratic.

Also, h(3) = h(-10) = 0

(A) h(x) = x^2 - 13x - 30

=> h(3) = 3^2 - 13(3) - 30

=> h(3) = 9 - 39 - 30

=> h(3) = -30 - 30

=> h(3) = -60

=> h(3) ≠ 0

(B) h(x) = x^2 - 7x - 30

=> h(3) = 3^2 - 7(3) - 30

=> h(3) = 9 - 21 - 30

=> h(3) = -12 - 30

=> h(3) = -42

=> h(3) ≠ 0

(C) h(x) = 2x^2 + 26x - 60

=> h(3) = 2(3^2) + 26(3) - 60

=> h(3) = 2(9) + 78 - 60

=> h(3) = 18 + 78 - 60

=> h(3) = 96 - 60

=> h(3) = 36

=> h(3) ≠ 0

(D) h(x) = 2x^2 + 14x - 60

=> h(3) = 2(3^2) + 14(3) - 60

=> h(3) = 2(9) + 42 - 60

=> h(3) = 18 + 42 - 60

=> h(3) = 60 - 60

=> h(3) = 0

And

=> h(-10) = 2(-10)^2 + 14(-10) - 60

=> h(-10) = 2(100) - 140 - 60

=> h(-10) = 200 - 200

=> h(-10) = 0

Clearly we have,

=> h(3) = h(-10) = 0

Hence, the correct option is (D) h(x) = 2x^2 + 14x - 60

Answered by saivivek16
14

Step-by-step explanation:

Aloha !

 \text { This is Sweety Adihya } ❤️

Concept used here:-

Mathematics

Question:-

The function h(x) is quadratic and h(3) = h(–10) = 0. Which could represent h(x)?

A.h(x) = x2 – 13x – 30

B.h(x) = x2 – 7x – 30

C.h(x) = 2x2 + 26x – 60

D.h(x) = 2x2 + 14x – 60

Answer:-

Given,

h(3)=h(-10)

Such that we can understand that h(3) should replace in given four equations and then simplify answer should equals to -10.

Step.1 -

x²-13x-30

(3)²-13(3)-30

9-39-30

≠ 0

Step.2 -

x²-7x-30

(3)²-7(3)-30

9-21-30

≠ 0

Step.3 -

2x²+26x-60

2(3)²+26(3)-60

2(9)+78-60

≠ 0

Step.4 -

2x²+14x-60

2(3)²+14(3)-60

2(9)+14(3)-60

18+42-60

60-60

= 0

So, h(x)=2x²+14x-60 represents.

Option- D

Hope it will help you

@ Sweety Adihya

Similar questions