Math, asked by srushtibulle740, 2 days ago

The G. C. D. of two numbers is 25% of one of the numbers. The second number is 9 times the G. C. D. If sum of the numbers is 1625, find their L. C.M. ​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

↝ The G. C. D. of two numbers is 25% of one of the numbers.

So,

Let assume that the two numbers be a and b.

↝ G. C. D. be represented by 'g'

So,

\rm :\longmapsto\:g = 25\% \: of \: a

\rm :\longmapsto\:g = \dfrac{25}{100}  \times a

\rm :\longmapsto\:g = \dfrac{1}{4}  \times a

\rm \implies\:\boxed{ \tt{ \: a \:  =  \: 4g \: }} -  -  - (1)

Also, given that,

↝ The second number is 9 times the G. C. D.

So,

\rm \implies\:\boxed{ \tt{ \: b \:  =  \: 9g \: }} -  -  - (2)

Further, given that,

↝ Sum of the numbers is 1625.

\rm :\longmapsto\:4g + 9g = 1625

\rm :\longmapsto\:13g = 1625

\rm :\longmapsto\:g = \dfrac{1625}{13}

\bf\implies \:\boxed{ \tt{ \:  \: g \:  =  \: 125 \:  \: }}

Now,

We know that,

L. C. M (a, b) × G. C. D (a, b) = a × b

So, on substituting the values, we get

\rm :\longmapsto\:L. C. M \times g = a \times b

\rm :\longmapsto\:L. C. M \times g = 4g \times 9g

\rm :\longmapsto\:L. C. M = 36g

\rm :\longmapsto\:L. C. M = 36 \times 125

\rm \implies\:\boxed{ \tt{ \: L. C. M \:  =  \: 4500 \:  \: }}

Similar questions