Math, asked by bhoim812, 2 months ago

the general solution of dy / dx +
xy = x is​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\:\dfrac{dy}{dx} + xy = x}

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} = x - xy

\rm :\longmapsto\:\dfrac{dy}{dx} = x(1 - y)

\rm :\longmapsto\:\dfrac{dy}{dx} =  - x(y - 1)

\rm :\longmapsto\:\dfrac{dy}{y - 1}  =  - x \: dx

 \displaystyle\rm :\longmapsto\: \int\dfrac{dy}{y - 1}  =  -  \int \: x \: dx

\rm :\longmapsto\: log(y - 1)  =  - \dfrac{ {x}^{2} }{2}  + c

\red{\bigg \{ \because \: \displaystyle \int \: \dfrac{1}{x}dx =  log(x) + c  \: \bigg \}} \\ \red{\bigg \{ \because \displaystyle \int \:  {x}^{n}dx = \dfrac{ {x}^{n + 1} }{n + 1} + c\: \bigg \}}

\rm :\longmapsto\: log(y - 1)^{2}   =  -   {x}^{2} +2 c

\red{\bigg \{ \because \:  log( {x}^{y} ) = y \: logx  \: \bigg \}}

\rm :\longmapsto\: log(y - 1)^{2} + {x}^{2} = d \:  \:  \: where \: d = 2c

Additional Information :-

Solution of linear differential equation :-

The linear differential equation is of the form

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \: where \: p, \: q \:  \in \: f(x)

Step :- Integrating Factor

\rm :\longmapsto\:Integrating \: factor, \: i.f. \:  =  {e} \: ^{ \displaystyle \int \: pdx}

Step :- 2 Solution is given by

\rm :\longmapsto\:y \times i.f. \:  =  \: \displaystyle \int \: (q \times i.f.) \: dx

Similar questions