The general solution of sin x − 3 sin2x + sin3x = cos x − 3 cos2x + cos3x is _________. Solution: sin x … If sec 4θ − sec 2θ = 2, then the general value of θ is __________. Solution: sec 4θ − sec 2θ = 2 ⇒ cos … If tan (cot x) = cot (tan x), then sin 2x = ___________. Solution: tan (cotx) = cot (tanx) ⇒ tan (cotx) = … If the solution for θ of cospθ + cosqθ = 0, p > 0, q > 0 are in A.P., then numerically the smallest …
Answers
Step-by-step explanation:
sec 4θ − sec 2θ = 2 ⇒ cos … If tan (cot x) = cot (tan x), then sin 2x = ___________. Solution: tan (cotx) = cot (tanx) ⇒ tan (cotx) = … If the solution for θ of cospθ + cosqθ = 0, p > 0, q > 0 are in A.P., then numerically the smallest …
Step-by-step explanation:
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Z
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx=
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ +
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ + 8
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ + 8π
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ + 8π
We have, (sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x⇒sin2x(2cosx−3)=cos2x(2cosx−3)⇒sin2x=cos2x(Ascosx=3/2)⇒tan2x=1⇒tan2x=tanπ/4⇒2x=nπ+ 4π ,n∈Zx= 2nπ + 8π ,n∈Z