Math, asked by rjtsahu0302, 11 months ago

The general solution of the nonhomogeneous equation y''-6y'-7=8e(-t)-7t-6 is

Answers

Answered by Swarup1998
0

Correct question: Solve the following differential equation

\quad D^{2}y-6Dy-7y=8e^{-x}-7x-6

Solution:

The given differential equation is

\quad D^{2}y-6Dy-7y=8e^{-x}-7x-6

To find C. F.

The auxiliary equation is

\quad m^{2}-6m-7=0

\Rightarrow (m+1)(m-7)=0

\Rightarrow m=-1,\:7

C. F. is therefore, C_{1}e^{-x}+C_{2}e^{7x}.

To find P. I.

Let, y_{p}=Axe^{-x}+Bx+C

Then, Dy_{p}=-Axe^{-x}+Ae^{-x}+B

and D^{2}y_{p}=Axe^{-x}-2Ae^{-x}

Since y_{p} is a root of the given differential equation,

\quad D^{2}y_{p}-6Dy_{p}-7y_{p}=8e^{-x}-7x-6

\Rightarrow Axe^{-x}-2Ae^{-x}+6Axe^{-x}-6Ae^{-x}-6B-7Axe^{-x}-7Bx-7C=8e^{-x}-7x-6

\Rightarrow -8Ae^{-x}-7Bx-6B-7c=8e^{-x}-7x-6

Equating like terms in both sides, we get

\quad\quad -8A=8

\quad\quad -7B=-7

\quad\quad -6B-7C=-6

\implies

\quad\quad A=-1,\:B=1,\:C=0

\therefore y_{p}=-xe^{-x}+x

\therefore complete solution is

\quad y=C_{1}e^{-x}+C_{2}e^{7x}-xe^{-x}+x

Similar questions